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ABSTRACT

In recent years, Deep Learning techniques have swept the state-of-the-art of many
applications of Machine Learning, becoming the new standard approach for them.
The architectures issued from these techniques have been used for transfer learning,
which extended the power of deep models to tasks that did not have enough data
to fully train them from scratch. This thesis’ subject of study is the representation
spaces created by deep architectures.

First, we study properties inherent to them, with particular interest in dimension-
ality redundancy and precision of their features. Our findings reveal a strong degree
of robustness, pointing the path to simple and powerful compression schemes.
Then, we focus on refining these representations. We choose to adopt a cross-

modal multi-task problem, and design a loss function capable of taking advantage of
data coming from multiple modalities, while also taking into account different tasks
associated to the same dataset. In order to correctly balance these losses, we also
develop a new sampling scheme capable of selecting examples that contribute to the
efficacity of the learning procedure.
Finally, we test our approach in a large-scale dataset of cooking recipes and

associated pictures. Our method achieves a 5-fold improvement over the state-of-the-
art, and we show that the multi-task aspect of our approach promotes a semantically
meaningful organization of the representation space, allowing it to perform subtasks
never seen during training, like ingredient exclusion and selection.
The results we present in this thesis open many possibilities, including feature

compression for remote applications, robust multi-modal and multi-task learning,
and feature space refinement. For the cooking application, in particular, many of our
findings are directly applicable in a real-world context, especially for the detection of
allergens, finding alternative recipes due to dietary restrictions, and menu planning.
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RÉSUMÉ

Ces dernières années, les techniques d’apprentissage profond ont fondamentalement
transformé l’état de l’art de nombreuses applications de l’apprentissage automatique,
devenant la nouvelle approche standard pour plusieurs d’entre elles. Les architectures
provenant de ces techniques ont été utilisées pour l’apprentissage par transfert, ce
qui a étendu l’efficacité des modèles profonds à des tâches qui ne disposaient pas de
suffisamment de données pour les entraîner à partir de zéro. Le sujet d’étude de cette
thèse couvre les espaces de représentation construits par les architectures profondes.
Dans un premier temps, nous étudions les propriétés de leurs espaces, en prêtant

un intérêt particulier à la redondance des dimensions et la précision numérique de
leurs représentations. Nos résultats démontrent un fort degré de robustesse de ces
espaces, pointant vers des schémas de compression simples et puissants.

Ensuite, nous nous concentrons sur l’apprentissage de ces espaces de représentations.
Nous choisissons d’adopter un problème multi-tâches intermodal et de concevoir une
fonction de coût capable de tirer parti des données de plusieurs modalités, tout en
tenant compte des différentes tâches associées au même ensemble de données. Afin
d’équilibrer correctement ces coûts, nous développons également un nouveau processus
d’échantillonnage sélectionnant des exemples permettant d’améliorer l’efficacité de
l’apprentissage.

Enfin, nous testons notre approche sur un ensemble de données à grande échelle de
recettes de cuisine et d’images associées. Notre méthode améliore de 5 fois l’état de l’art
sur cette tâche, et nous montrons que l’aspect multitâche de notre approche favorise
l’organisation sémantique de l’espace de représentation, lui permettant d’effectuer
des sous-tâches jamais vues pendant l’entraînement, comme l’exclusion et la sélection
d’ingrédients.
Les résultats que nous présentons dans cette thèse ouvrent de nombreuses possi-

bilités, y compris la compression de caractéristiques pour les applications distantes,
l’apprentissage multi-modal et multitâche robuste et le raffinement de l’espace des
caractéristiques. Pour l’application dans le contexte de la cuisine, beaucoup de nos
résultats sont directement applicables dans une situation réelle, en particulier pour la
détection d’allergènes, la recherche de recettes alternatives en raison de restrictions
alimentaires et la planification de menus.
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INTRODUCTION

1.1 Context

Machine Learning (ML), under the broader domain of Artificial Intelligence (AI),
has recently gained the attention of the scientific community and of the private
sector due to its newly-acquired capability of solving complex problems. Advances in
computer hardware and software allowed techniques that estimate a huge number of
parameters to be exploited in a feasible time frame, contributing to the expansion of
this area of study.

The development of large-scale public datasets was an important step to this change
in panorama. Notably, ImageNet 1, which contains over 14 million images, had a big
impact on the development of Computer Vision (CV) algorithms. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015), containing a
subset of the initial dataset, has been promoted yearly since 2010, with its last version
taking place in 2017, and served as a showcase for state-of-the-art CV approaches.
After A. Krizhevsky et al. 2012’s victory on the ILSVRC 2012 classification track,

opening a big gap between them and the second best entry, as shown in Figure 1.1, a
family of techniques gained the attention of these communities. These techniques are
now commonly known as Deep Learning (DL) — a term coined by Dechter 1986 that
gained popularity. On subsequent years of this competition, all the top entries were
composed of deep architectures.

1. http://www.image-net.org
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2 introduction

Figure 1.1 – Best and second-to-best teams on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) classification track. The
big gap in performance between the winning entry and the second one
observed in the year of 2012 mark the emergence of deep architectures.

CV is possibly the field that perceived the biggest advances in this recent DL sprout,
with drastic changes in the diversity of techniques being employed. This phenomena
drew the attention not only of the academic sphere, but also of the private sector that
saw an opportunity to make use of the massive amounts of data at their disposal.
Facebook, for example, reported back in 2013 to receive 350 million new photos

each day, with more than 250 billion photos already uploaded by that time 2. Most
of these images are processed to be correctly tagged, searched, and identified, and
powerful algorithms are required to accomplish it.

With both the academic and the private spheres interested in the potential of these
methods, the ML community was able to establish an interactive partnership between
public and private sectors, both researching the subject and publicly publishing new
findings.
Many of the challenges being explored by these researchers involve images, and

they have been known and tackled by the CV community for the past years. Two
of the most prominent ones are the classification and the retrieval tasks, both of
them facing similar difficulties related to: occlusion, deformation, clutter, intra-class
variation, illumination conditions, viewpoint and scale variation.

The classification task, possibly the most traditional one in the field, aims at finding
corresponding labels (e.g human, train, computer) for a given image, as exemplified
in Figure 1.2. In order to do so, one must be able to generalize knowledge about a
specific label. For example, there are multiple breeds of dogs, and they look different,
but they are all dogs — then how can an AI system learn the macro concept of

2. http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9?IR=T
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(a) The dog class and some of its instances (b) Instances from an unknown class

Figure 1.2 – Challenges in the classification task. The construction of a general
model for identifying a given class is a complex task, demanding the
ability to identify objects of interest while ignoring background and noise
in the image. Figure 1.2a shows the dog class, and some of its instances.
Figure 1.2b exemplifies the task of learning what is a dog, from a set of
images limited by camera perspective and other factors.

what is a dog from a limited set of samples? Until recently, the standard way of
achieving this was by creating a numerical description of each image with a feature
extractor—and many of these have been proposed in the scientific literature—, then
applying a classifier to discriminate them.

The problem then is to find such a feature extractor that is capable of capturing all
the important traits we need. For example, in classical CV, the Bag-of-Words (BoW)
representation was used to numerically describe an image; as well as the Object Bank
representation (Li et al. 2013), which uses object detectors to describe an image.
These descriptors are given to a classifier which makes the final decision. In this
schema, the object detectors do not have to be necessarily of the same classes being
detected, since complementary features between those classes and the ones from the
detectors may be used to identify the correct label. This scheme is very similar to
modern transfer learning approaches, the difference being that the latter can take
advantage of deep networks as feature extractors.
For modern classification tasks, instead of using hand-crafted feature extractors

for creating a numerical description of the images, a DL model is adopted (for image,
usually a Convolutional Neural Network (CNN)), unifying the feature extraction
and classifier into a single framework capable of doing it all at once. However, the
transfer learning approach we previously mentioned challenges this concept of all-in-
one architecture by showing that a trained CNN can generate features that are not
exclusive to its known classes (Oquab et al. 2014).
The classification task has many applications in the real world. One of the first

known cases for the image classification is associated to networks like LeNet5 (LeCun



4 introduction

Figure 1.3 – The image retrieval task. The goal in the image retrieval task is to
find, among a set of candidates, the closest image from a given query.
In this example, we are looking for a dog among the images. Note that
the query and the retrieved images need not be the same.

et al. 1998), able to identify handwritten digits, and widely used in post office for
automatically routing packages and letters. Another example is present in modern
phones and cameras that include a smart photo function capable of detecting the type
of scene being shot and then adjusting the image acquisition parameters properly.

As for the retrieval task, and in particular content-based image retrieval, the goal
is to find an image—traditionally, the most similar one among a set of images—,
given another one. The retrieval task can, however, take many different forms, as we
will see throughout this thesis, but it always follows the pattern of “find (something)
based on (something else) using (this criterion)”. Figure 1.3 depicts a simple image
retrieval task, where the objective is to retrieve an image based on the class similarity
with the query.

More advanced flavors of the retrieval task deal with multi-modal data, creating
common numerical representation spaces where the modalities can be compared.
Inside of these spaces, each modality (e.g. image, text, sound) is represented as a
point, and the vector containing the coordinates of these points are the embeddings
of the items they represent.

Just like the classification, the retrieval is also present in many of our daily activities,
such as: singing part of the lyrics of a song in order to find its name (e.g. Shazam 3,

3. https://www.shazam.com/
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SoundHound 4), searching for visually similar images in search engines (e.g. Google 5,
Bing 6), or even taking pictures of a dish and looking for visually similar recipes (e.g.
VISIIR 7). The multi-modal retrieval also has its place in this list, as most of the
image searches through search engines and cloud-storage services are based on textual
description, and the system must be able to make the connection between what the
user typed and the images of interest—in this case, the query is a text, and the result
is an image.

The idea behind transfer learning is to reuse parameters from a pre-trained network.
Training such networks from scratch can be very costly in terms of data and processing
power, therefore reusing part of the knowledge from a pre-trained network can reduce
the data greediness for a new task. For this particular reason, transfer learning
unleashed the power of deep networks for small and mid-sized tasks.
In this context, transfer learning is usually done by adopting a network trained

on a large-scale dataset, and then taking feature vectors from output of one of its
intermediate layers. Later, these vectors can be used in different ways: (1) for
classification, a new classifier is trained with them. This classifier can take the form
of another layer in the network, specialized on the new task, or of something else, like
Support Vector Machines (SVMs). (2) however, for the retrieval task, if one assumes
these vectors already encode several invariances learned by the network, it can be
directly adopted as the embedding of the image.
These new tasks are trained using cost functions, also known as loss functions.

They are responsible for measuring how much the result obtained differs from the
one expected, and usually these functions are derivable—and in this case, this error
can be propagated throughout the network to find out how much each parameter
contributed to the mistake. This information is present in the gradient, which is the
first order derivatives of the loss function with respect to the weights of the network.

The transfer strategy allows the gradient to correct the weights in the part of the
network specialized to the new task, while keeping the pre-trained model untouched.
But to improve even more their performance, fine-tuning strategies can be adopted.
These consist in allowing the gradient of the cost function to propagate back through
the pre-trained network, usually with a lower weighting factor, instead of being
constrained exclusively to the new task. This allows the whole architecture to adapt
to the new task, removing uninformative features and possibly creating new ones.

1.2 Motivations

One concern that raised from the adoption of these new strategies is the explain-
ability and understanding of the inner workings of these CNNs. Some researchers

4. https://soundhound.com/
5. https://www.google.com/
6. https://www.bing.com/
7. http://visiir.lip6.fr/



6 introduction

tried to tackle this problem by analyzing which part of the image the network was
paying more attention to, while others tried to enforce a meaning while designing the
architecture of the network, making sure it was more interpretable (e.g. Mahendran
et al. 2015; Xu et al. 2015; Mnih et al. 2014).
The power of these architectures have also been exploited with transfer learning,

which consists in reusing part of the knowledge learned by the model in another
task. However, important aspects of the representation constructed by these networks
did not receive much attention, in particular their redundancy, compactness, and
robustness.

By adopting a transfer learning scheme we are able to measure the performance of
a deep network in different tasks, which leads us to study, in the first part of this
manuscript, the three properties we mentioned with the help of something we call a
stress framework, responsible for interfering with the knowledge being transferred.

Then, we focus on learning these representations, with particular interest in ways
of refining the knowledge they hold. Many strategies were developed in attempt to
improve the way they are learned, but they usually rely on intuitions that are either
very specific to a dataset, or that are based on assumptions that are not always true
to all tasks.
We study, on a second part of this manuscript, ways to better construct theses

spaces, allowing them to be rich in information. For this purpose, we propose a metric
learning approach that can take advantage of instance-wise labeling, commonly used
for retrieval, as well as class-based labeling, commonly used for classification.

Using two different types of data in a learning strategy is usually done with multi-
task learning. In this perspective, our approach is, indeed, multi-task. However,
contrary to standard strategies, we would like to directly introduce the constraints
for each task into the space created by the network, instead of adding specific parts
responsible for each of them.
We are also interested in measuring the impacts of our strategies in a specific

scenario with multi-modal data. In particular, we want to know if the usage of a
multi-task strategy can improve results for applications from the information retrieval
task. Therefore, in a third part of this manuscript, we test if these spaces exhibit the
properties we sought — the instance-based and the class-based information, while
also studying the general structure generated by the way the representations were
constructed.

1.3 Contributions and Outline

The contributions of this work are three-fold:

1. Chapter 2: exploring representation spaces
In the first part of this manuscript, we introduce our stress framework, capable
of accessing properties of the feature spaces generated by a Deep Convolutional
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Neural Network (DCNN). It consistently interfere in the network in order to
selectively destroy information.
Although recent studies reevaluate deep architectures with respect to the size
and precision of their representations, their primary focus are practical impacts
upon the original tasks. Our framework is designed for transfer learning tasks
and, as we try to shed light on general properties of the networks, we observe
a strong degree of resiliency and redundancy in their features, opening the
opportunity to create powerful compact descriptors.
The stress framework is designed to provide a better understanding of deep
feature spaces. We develop tools to measure their redundancy and resiliency
to deformations, our findings open new possibilities for powerful compression
schemes.
It works by first extracting features using a pre-trained CNN, and then applying
different transformations to these features, measuring how the classification
performance is affected by them. This approach allows us to access specific char-
acteristics inherent to the representation spaces constructed by these networks,
while also providing us with insights about its inner workings.

2. Chapter 3: learning multimodal latent spaces
For the second part, we present a new constrained learning scheme called
AdaMine.
When tackling multi-modal problems, a common approach is to have an archi-
tecture with parts specialized to different tasks associated with the modalities
of the problem. However, we are interested in having an unified framework,
able to deal with modalities without adding extra parameters to the model, nor
learning specific subtasks.
Departing from a pre-trained model, AdaMine’s goal is to refine the feature
space with a fine-tuning based approach. It aligns images and texts descriptors
for applications related to cross-modal retrieval directly in the representation
space, without adding parts to the model.
Its first part involves the combination of semantic- and instance-based informa-
tion in an unified loss, and its second part encompasses solutions for selecting
informative triplets in a large scale optimization context.
The resulting method is an adaptive strategy for negative mining, which pro-
vides faster and more stable convergence when compared to other approaches.
We evaluate it on the large and challenging Recipe1M cross-modal dataset,
outperforming the state-of-the-art models by 5-fold improvement.

3. Chapter 4: retrieval in the cooking context
Finally, in a third part, we perform an extensive qualitative study of the spaces
created by AdaMine.
We show that with our new constraints, the semantic space gain properties that
can be exploited in order to obtain specific information inside of it. We provide
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a broader analysis of the feature space, experimentally showing that because
our loss introduces semantic information into it, we are able, for example, to
retrieve recipes related to a specific ingredient, or to search recipes that do
not contain specific ingredients. This is a strong indicator that the learning
strategies we adopted are powerful and flexible enough to extrapolate to broader
tasks.
This discussion led to a better understand of the feature spaces constructed
with the additional semantic information, which acts as a global regularizer to
these spaces. Many applications in the domain of the computational cuisine can
be derived from this kind of approach, such as finding recipes with alternatives
to ingredients that provoke allergy or intolerance, as well as general recipe
retrieval from pictures.

1.4 Related publications

The following publications are included in parts or in an extended version in this
thesis:

— Micael Carvalho, Matthieu Cord, Sandra Avila, Nicolas Thome, and Eduardo
Valle (2016). “Deep Neural Networks Under Stress”. In: IEEE International
Conference on Image Processing (ICIP)

— Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, Nicolas Thome,
and Matthieu Cord (2018). “Cross-Modal Retrieval in the Cooking Context:
Learning Semantic Text-Image Embeddings”. In: The ACM conference on
Research and Development in Information Retrieval (SIGIR)

— Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, and Matthieu
Cord (2018). “Images & Recipes: Retrieval in the cooking context”. In: IEEE
International Conference on Data Engineering (ICDE), Data Engineering meets
Intelligent Food and Cooking Recipe (DECOR) workshop
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Chapter abstract

In recent years, deep architectures have been used for transfer learning with
state-of-the-art performance in many datasets. The properties of their features
remain, however, largely unstudied under the transfer perspective. In this chapter,
we present an extensive analysis of the resiliency of feature vectors extracted
from deep models, with special focus on the trade-off between performance and
compression rate. We show that deep features are more robust to disturbances
than classical approaches, and our findings are a strong starting point to develop
techniques related to network compression and mimic learning.

Part of the work in this chapter led to the publication of a conference paper:
— Micael Carvalho, Matthieu Cord, Sandra Avila, Nicolas Thome, and Eduardo Valle

(2016). “Deep Neural Networks Under Stress”. In: IEEE International Conference
on Image Processing (ICIP)

9
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2.1 Introduction

As discussed in Chapter 1, Deep Convolutional Neural Networks (CNNs) have swept
the Computer Vision (CV) community, with state-of-the-art performance for many
tasks (A. Krizhevsky et al. 2012; He et al. 2015; Durand et al. 2016), going as far as
being applied to other domains, including linguistic analysis (e.g. Vanni et al. 2018).
However, an analytical understanding of their models is still lacking, shrouding their
use under a cloud of ad hoc procedures — tricks of the trade — without which they
simply fail to work. Therefore, a full understanding of deep representations became
the new Holy Grail of research in Machine Learning and Computer Vision (Bruna
et al. 2013; Y. LeCun et al. 2015).
We explore in this chapter the properties of Deep Networks, measuring to which

extent they preserve discriminative information about the input, i.e., measuring the
robustness of the feature vectors they generate. Indeed, we may understand a deep
model as one that first learns to extract a good representation (feature extraction
step) and then uses that representation to make a decision (classification or regression
step). Most of the challenge in understanding deep models is due to the unknown
nature of the learned features.

Figure 2.1 – Overview of our stress framework. Input images are converted
to stressed feature vectors by: (1) extracting descriptions using a pre-
trained deep network, (2) transforming/stressing the feature vectors by
reducing their precision or their number of dimensions.

Our main objective is to investigate the VGG-M deep convolutional model (Chatfield
et al. 2014), originally trained on ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), in a transfer scheme for the classification task of the PASCAL Visual
Object Classes (PASCAL VOC) 2007 dataset (Everingham et al. 2010). Our proposal
is a stress framework, represented in Figure 2.1, which consistently interfere in the
network to selectively destroy information.
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We explore two important aspects of deep architectures: dimensionality and
numerical precision of their representations. Dimensionality stress tests reduce the
dimension of the representations generated by the network, giving us insights about
the redundancy and co-adaptation of features, and quantization stress tests quantize
them by limiting the set of their possible values, showing if there are unnecessary
details in them. We also combine the two stresses to measure their overlap and
complementarity, and perform extensive experiments to study the robustness of this
architecture.
This chapter is organized as follows:

— In Section 2.2 we discuss classical transfer schemes for Deep Convolutional Neural
Networks (CNNs). The vanilla strategy is adopted in the proposals presented in
this chapter, and the fine-tuning approach is used in all chapters of this thesis;

— We then present in Section 2.3 the stress framework used to probe the network we
study, with its two main parts that include the dimensionality reduction and the
quantization. Those are responsible for measuring the resiliency and redundancy
in deep representations used for transfer learning;

— The experimental setup, as well as the results we obtain are presented in Section 2.4.
We show that due to the properties we measure, it is possible to obtain a high
level of compression while keeping good performance 1;

— In light of the results we obtained, in Section 2.5 we discuss network compression
schemes, and devise a way of taking advantage of our findings with the stress
framework in order to improve mimic learning 1;

— Finally, in Section 2.6 we discuss results obtained in this chapter, and point
perspectives for future work related to feature and network compression schemes.

2.2 Transfer Strategies

Although recent studies reevaluate deep architectures with respect to the size
and precision of their representations (e.g. Vanhoucke et al. 2011; M. Courbariaux
et al. 2015b; M. Courbariaux et al. 2015a; Judd et al. 2015), their primary focus are
practical impacts upon the original tasks. Our framework is designed for transfer
learning tasks and, as we try to shed light on general properties of the networks
we study, we will see that they show a strong degree of redundancy, opening the
opportunity to create powerful compact descriptors and to explore efficient network
compression strategies.
Transfer learning consists in recycling knowledge from one model to another, in

the form of model weights, initialization, or architecture, saving both computational
resources and training data. Although it is a classical approach that can be adapted
to most learning systems, recently it has been used, with great success, on deep

1. The source code the experiments presented in this part, as well as high resolution figures, is
available online at https://github.com/MicaelCarvalho/DNNsUnderStress

https://github.com/MicaelCarvalho/DNNsUnderStress
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models that are very greedy in terms of data and processing power (Azizpour et al.
2016). We are particularly interested in modern strategies, which usually adopt a
pre-trained CNNs as the initial network.

The number of evidence for the efficacy of these approaches piles up, as many small
tasks have their state-of-the-art scythed by deep networks. This was particularly
evident when Razavian et al. 2014 showed how their CNNs achieved better or competing
results in many tasks, going as far as saying their conclusions are that DL with CNNs
should be considered the primary candidate in essentially any visual recognition task.
One of the biggest reasons for adopting transfer learning is to reduce the data-

greediness of the model. In CV, it is common to adopt networks trained on the
ILSVRC dataset, which was financially expensive and took years to fully annotate.
However, in a simple classification task, one could just reuse such a model and re-train
a classification layer using a much smaller dataset. Other datasets have also been
successfully used to train initial models for transfer learning, especially when they
are semantically connected to the desired task (e.g. Zhou et al. 2014).

Transfer learning is a fundamental concept for this chapter, and the transferability
of features issued from deep networks has been studied before (see Yosinski et al.
2014). Therefore we present in the following two of the main strategies for performing
it. For a larger number of variations and techniques, we refer the reader to the works
of Pan et al. 2010 and Weiss et al. 2016, who conduct a broader study on the topic.

Vanilla transfer learning A straightforward scheme to perform transfer learning
is to choose a pre-trained network, freeze its weights up to a certain layer, and to
introduce and train new layers for the new task, this setup is depicted in Figure 2.2.
By picking different layers from the original network, one controls the degree of
transfer between the models. Conceptually, the output of the frozen transferred layers
for any image may be seen as a feature vector, thus any classifier may be used for
classification on a target dataset.
This kind of approach is adopted by Chevalier et al. 2015, who use a multi-class

linear SVM on two fine-grained datasets: FGVC Aircraft (Maji et al. 2013), for
airplane classification, and the challenging PPMI (Yao et al. 2010), in which the task
is to distinguish between people playing instruments and people merely holding them.
Similarly, Durand et al. 2015 adopt a deep network for extracting visual features, this
time from different datasets, classifying with their modified SVM called MANTRA.

Fine-tuning More advanced strategies perform, however, the fine-tuning of features.
This method, represented in Figure 2.3, consists in allowing the gradient to be
propagated through the copied network, often with a smaller learning rate, allowing
the weights to slightly adapt to the new task, and to remove information no longer
useful for the new objective.

An interesting study conducted by Yosinski et al. 2014 question the transferability
of features from deep Artificial Neural Networks (ANNs). They split the 1000 ILSVRC
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Figure 2.2 – The vanilla transfer learning scheme. Part of the weights of a
model (A) that has been pretrained for a specific task are used, and a
classifier is trained for a new task (B). No gradient is backpropagated
through the weights of the pretrained model, therefore only the new
classifier is learned.

classes into two groups, each containing 500 classes and approximately half of the
data. Two networks are then trained, one for each half. Later, a network is picked
and part of its layers are retrained for both tasks, yielding two new networks. If
they perform similarly, there is evidence that the features from the chosen layers
are general. In a similar spirit, Girard et al. 2018; Tamaazousti et al. 2017 conduct
experiments to shed light on the generalization of representations extracted from
deep networks for transfer learning.
Contrary to Razavian et al. 2014, one of Yosinski et al. 2014’s goals is to test the

effect of fine-tuning on the transfer. In order to do so, they recreate the same networks,
with the same architecture, but by adopting fine-tuning instead of vanilla transfer
learning. Their results show that fine-tuning can recover co-adapted interactions
between layers, reducing drastically the damages of the transfer process. Furthermore,
their architectures that were fine tuned achieved better performance than the ones
originally trained exclusively on one half of the data, indicating that the transfer
learning associated to fine-tuning can improve generalization, since the network is
able to see more images.

In our pursuit of a better understanding of the unknown nature of features extracted
from deep architectures, we use transfer learning and “stress” tests to probe deep
ANNs, presented in the following section.

2.3 Stress Framework

Our proposition is complementary to, and built upon the studies conducted by
Razavian et al. 2014, Yosinski et al. 2014. We adopt VGG-M (Chatfield et al. 2014) as



14 exploring representation spaces

Figure 2.3 – Transfer learning with fine-tuning. Part of the weights of a model
(A) that has been pretrained for a specific task are used, and a classifier
is trained for a new task (B). The gradients of the new classifier are
propagated through the weights of the pretrained model. Contrary to
the vanilla transfer learning scheme, fine-tuning allows the network to
adjust all of its weights, including the copied ones.

base architecture, but to better highlight inherent properties of deep models, instead
of specific characteristics of this model, we also evaluate part of our experiments with
GoogLeNet (Szegedy et al. 2015). Furthermore, in order to differentiate these deep
models from classical approaches, we also report comparative results with the Bag-of-
Words (BoW)’s model BossaNova (Avila et al. 2013). In all cases, we pre-process the
images according to each model’s recommended protocol.

Let us formalize the pre-trained deep model as a series of functions φi : Rmi → Rni ,
where φi is the ith layer of the network, m1 is equal to the dimensionality of the input
data and ni = mi+1 is the output of such layer. In our stress tests, we choose a layer
i up to which we freeze the network (i.e., we keep layers φ1...φi untouched). At first,
we use the output of layer φi to train an SVM. Then, we pick a stressing function T
and retrain the model using T (φi) as input. Comparing the two scores, we can infer
the network’s resiliency to the chosen stress.

Our stressing functions are divided in two groups: dimensionality reduction and
quantization, described in the following subsections. For the first, we are trying to
answer the question: “Instead of having feature vectors of 4096 dimensions, can we
have, for example, 800 while keeping the same performance?”. As for the second
group, we focus on the question: “Can we reduce the precision of the values in the
feature vector and keep the same scores? For example, by only using 4 bits instead
of 32.”
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2.3.1 Dimensionality Reduction (DR)

In order to understand how redundant is the deep representation, the first stress
tests drop dimensions from the feature vector. The number of dimensions pi preserved
at each test step 1 ≤ i ≤ 20 is proportional to the initial size n of the feature vector,

following pi =
⌊
n ∗ (21− i)

20

⌋
.

We contrast two strategies for selecting which pi−1 − pi dimensions should be
dropped at each step i: TDR-1 randomly drops them, from the ones left; and TDR-2

uses a PCA-based strategy, that discards the dimensions encoding less variance and
therefore being less informative for a simple classifier. To take in consideration the
random choice in DR-1, we repeat the experiment 10 times and report the average
score.

2.3.2 Quantization (Q)

Algorithm 2.1 Creating a new language for the quantiza-
tion process. j is the minimum and k is the maximum value
observed in the training set, and n is the number of entries
in the dictionary.
1: function create_language(j, k, n)

2: step← k − j
n

3: value← j +
step

2
4: new_language← [ ]

5: while value < k do
6: append value to new_language
7: value← value+ step

8: end while
9: return new_language
10: end function

The other stressor diminishes the numerical precision of the representation, quan-
tizing the feature vectors. Our objective is not to explore advanced quantization
strategies here, but to consider 2 fast and simple scalar quantizations and to analyze
their effect on a classification task. In our first one, Q-1, all dimensions are quantized
in the same h ∈ [1, 30] regular intervals, using the minimum (min) and maximum
(max) scalar values observed in the training set for all dimensions. In our second one,
Q-2, we adapt the limits for each dimension individually, according, again, to values
observed in the training set.
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Algorithm 2.2 Quantization of the feature vector for the Q-1 strategy
1: function quantize_feature_vector(feature_vector, new_language)
2: fsize← size(feature_vector)
3: lsize← size(new_language)
4: quantized_features← feature_vector
5: for i = 1 to fsize do
6: winner ← 1

7: distw ← feature_vector[i]− new_language[winner]
8: for j = 2 to lsize do
9: distj ← feature_vector[i]− new_language[j]
10: if |distj| < |distw| then
11: winner ← j

12: distw ← distj

13: end if
14: end for
15: quantized_features[i]← new_language[winner]
16: end for
17: return quantized_features
18: end function

Let x be the feature matrix of the training feature vectors. Formally, Q-1, using
the global step st = max(x)−min(x)

h
, has a single dictionary H, generated by

H =

{(
min(x) +

st

2

)
+ st ∗ i | 0 ≤ i < h

}
For Q-2, let xt the tth element from all the vectors in x. Using one step stt =

max(xt)−min(xt)
h

per dimension, Q-2 has n (number of dimensions) dictionaries, gener-
ated by

Ht =

{(
min (xt) +

stt
2

)
+ stt ∗ i | 0 ≤ i < h

}
Finally, in the quantization step, we assign to each element the value of the closest

point in the dictionary. For Q-1 and Q-2, respectively, this is defined by:

TQ-1(xij) = argmin
y

{abs (xij − y) | y ∈ H}

TQ-2(xij) = argmin
y

{abs (xij − y) | y ∈ Hj}

We offer, in Algorithm 2.1, an algorithm for the process of creating these dictionaries.
For Q-1, this algorithm is called once, with j being the minimum and k the maximum
observed values throughout all feature vectors in the training set; for Q-2, this
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Algorithm 2.3 Quantization of the feature vector for the Q-2 strategy
1: function quantize_feature_vector(feature_vector, new_language)
2: fsize← size(feature_vector)
3: quantized_features← feature_vector
4: for i = 1 to fsize do
5: winner ← 1

6: distw ← feature_vector[i]− new_language[i][winner]
7: lsize← size(new_language[i])
8: for j = 2 to lsize do
9: distj ← feature_vector[i]− new_language[i][j]
10: if |distj| < |distw| then
11: winner ← j

12: distw ← distj

13: end if
14: end for
15: quantized_features[i]← new_language[i][winner]
16: end for
17: return quantized_features
18: end function

algorithm is called once for each position of the feature vector, with j being the
minimum and k the maximum values observed for that position.
The quantization is then performed using the dictionaries we just calculated.

Because Q-1 and Q-2 have different strategies, the first acting globally on the feature
vector, and the second acting locally, at each position of them, the process for
quantizing the features is different for them. We detail the quantization procedure in
Algorithm 2.2 for Q-1, and in Algorithm 2.3 for Q-2.

2.3.3 Feature Compression (FC)

The final experiment FC, applies both stressors TDR−2 and TQ−2 simultaneously,
dropping dimensions of the feature vector and quantizing the values of the remaining
elements. Our goal is to measure any cross-effects between DR-2 and Q-2.

2.4 Experiments

As explained, for a given experimental point, we freeze a pre-trained network at
layer φi, discarding all upper layers. We then pick a stressing function T , and use
the output of T (φi) as a feature vector in a transfer learning classification task. We
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Figure 2.4 – Overview of our experimental setup for the stress framework.
Input images are converted to stressed feature vectors by: (1) extracting
descriptions using a pre-trained deep network, (2) transforming/stressing
the feature vectors by reducing their precision or their number of di-
mensions. These vectors are fed to a classifier. The performance of the
classifier is measured with and without our stressor, and the difference
is used to quantify the impact of the transformations.

`2-normalize those feature vectors, and feed them to a linear SVM model 2 (Fan et al.
2008), measuring the model’s scores for different choices of T . This full pipeline
is represented in Figure 2.4. By picking stressing functions of different kinds and
intensities (including the identity T (x) = x) we gain insight on the resiliency of deep
models to those stresses.

Our base setup is composed of the VGG-M network (Chatfield et al. 2014), detailed
in Table 2.1, and the PASCAL Visual Object Classes (PASCAL VOC) 2007 dataset (Ev-
eringham et al. 2010). We explore how to extend the results obtained for this dataset
by comparing part of the experiments with two other: MIT-67 – Indoor (Quattoni
et al. 2009) and UPMC Food-101 (X. Wang et al. 2015), containing 67 and 101 classes,
respectively. The classification scores are reported in mean Average Precision (mAP)
for PASCAL VOC 2007, and Accuracy (ACC) for Food-101 and MIT-67, following
literature’s tradition on those datasets. We adopt a simplified BossaNova’s pipeline,
without the concatenation with the classic Bag of Visual Words, and a linear SVM.

2. For all setups, we use a regularization parameter C = 1; preliminary experiments shown very
little variation when the C was cross-validated.
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G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8

Conv. L 1 L 5 L 9 L 11 L 13 – – –
Fully – – – – – L 16 L 18 L 20
ReLU L 2 L 6 L 10 L 12 L 14 L 17 L 19 –
LRN L 3 L 7 – – – – – –

Pooling L 4 L 8 – – L 15 – – –
Softmax – – – – – – – L 21

Table 2.1 – The layers of the VGG-M model. Description of layers (L) and
groups (G) of the VGG-M model (Chatfield et al. 2014), from the Mat-
ConvNet toolbox (Vedaldi et al. 2015). Conv. indicates a convolutional
layer, Fully a fully connected layer, ReLU a Rectified Linear Unit layer,
LRN a Local Response Normalization layer, Pooling a Max Pooling layer
and Softmax the activation of the Softmax function.

Furthermore, we also evaluate part of our experiments with GoogLeNet (Szegedy et al.
2015) and, in order to differentiate these deep models from classical approaches, we also
report comparative results with the Bag-of-Words (BoW)’s model BossaNova (Avila
et al. 2013). In all cases, we pre-process the images according to each model’s
recommended protocol.

Table 2.2 shows the baseline scores for our experiments, using setups without
perturbating the feature vectors (i.e., T (x) = x). Because our objective is to measure
the individual impacts of our strategies, all of our analyses are performed with respect
to these scores — for a given experiment, we report how much of the original score is
achieved. For example, if, for a given stress test, we report 100% for a VGG-M model
with MIT-67, this represents a real score of 63.35%. In other words, the stressor had
no effect on the baseline score. Unless otherwise stated, for all experiments we report
results obtained using the penultimate fully connected layer for each network, as this
is the standard transfer learning protocol.

2.4.1 Dimensionality Reduction (DR)

The objective of this first round of experiments is to access the amount of redundant
information in the descriptors extracted from the tested models. In order to do so,
we directly measure their performance under a dimensionality reduction stressor. If
we obtain similar scores after removing many dimensions of the feature vector, the
SVM classifier was able to recover most of the important traits for the classification
task from the remaining dimensions, revealing the redundancy in the initial features.
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VGG-M GoogLeNet BossaNova

PASCAL VOC 2007 (mAP) 76.95% 80.58% 51.02%
MIT-67 Indoor (ACC) 63.35% – –
UPMC Food-101 (ACC) 46.22% – –

Feature Dimensionality 4 ∗ 103 5 ∗ 104 6 ∗ 104

Table 2.2 – Classification scores for different architectures (VGG-M,
GoogLeNet, and BossaNova) and datasets (PASCAL VOC 2007,
MIT-67, and UPMC Food-101). We show scores for deep and BoW
strategies in a vanilla transfer scheme, with a linear SVM as classifier.

Base dataset To begin, we apply this stressor to all architectures using our base
dataset PASCAL VOC 2007. We present the results for this test in Figure 2.5, where
we observe strong redundancy on all the tested representations. This is indicated by
the thin shadowed areas around each curve, which represent the standard deviation
across multiple runs using the same setup.

Figure 2.5 – Results for random dimensionality reduction (DR-1) on
PASCAL VOC 2007 with standard deviation (shaded regions around
the lines). In the horizontal axis, each value indicates the percentage
of the original dimensions that is kept, while the corresponding score,
with the respect to the initial one, is shown vertically. On the right side
of the figure, we show the number of dimensions for each model, when
only 5% of their initial size is preserved.

In this test, GoogLeNet was the most robust against the random dimensionality
perturbation (DR-1), with an average mAP drop of 4.74% for 95% of the dimensions
removed. However, GoogLeNet with its 2508 dimensions when 95%-compressed
is, from start, 12-times larger than CNN-M, with 204 dimensions under the same
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Figure 2.6 – Results for different dimensionality reduction strategies for
PASCAL VOC 2007. The PCA-based strategy DR-2 enables the com-
pression scheme to keep more information, when compared to a random
strategy (DR-1), yielding better results.

compression rate. Considering a direct comparison of descriptions of approximately
the same size, the scores of the two models were equivalent.

Although BossaNova has shown similar resiliency to dimensionality reduction
with respect to VGG-M, the latter held better scores for every test point, despite
having feature vectors 15-times smaller — 3172 dimensions for BossaNova with a
95% compression rate, versus 204 for VGG-M. The 95%-reduced dimensionality for
each model is indicated on the right side of Figure 2.5.

The PCA-based strategy (DR-2) was very effective for preserving information while
dropping dimensions, as shown in Figure 2.6. Despite having the same dimensionality
at every test point, DR-2 held 97.95% of the original mAP when removing 95% of
the original dimensions, while DR-1 could only keep 89.16% of the original mAP. We
conclude that choosing the right dimensions to drop improves the robustness of the
feature vectors to dimensionality perturbations.

Base network We proceed, then, to fix the base network, and apply the stressor
to different datasets. The results observed in Figure 2.7 indicate that the number
of classes in the target dataset also seems to play an important role on performance
resiliency.

For correctly classifying the data, diverse datasets may need complementary feature
points, which can be lost with dimensionality reduction. We observe that larger
datasets like Food-101, which contains 101 classes, have stronger responses to the
dimensionality perturbations, and seem to need more of the original dimensions in
order to be correctly classified. On the other hand, MIT-67, with 67 categories,
suffered less from the reduction, and PASCAL VOC 2007, with 20 classes, was the one
which better resisted to this stressor.
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Figure 2.7 – Results for dimensionality reduction (DR) with VGG-M for Food-
101, MIT-67 and PASCAL VOC 2007. The datasets have 101, 67 and 20
classes, respectively.

All results We show, in Figure 2.8, all of the results discussed in this sub-chapter
in a single figure, as well as results for VGG-M-128 — a reduced version of VGG-M,
with 128 dimensions in its feature space.

Figure 2.8 – Results for all dimensionality reduction (DR) experiments with
GoogLeNet, BossaNova, and VGG-M for Food-101, MIT-67, and
PASCAL VOC 2007.

The best resiliency was observed when using DR-2, that uses a PCA-based strategy.
We also observed an intuitive property: as the feature space gets more compact from
the beginning, the dimensionality reduction causes more damage to the performance.
This is evident when comparing VGG-M with VGG-M-128, the latter being trained
with less dimensions on its original feature vector.

Layer choice In the last study for this stressor, we measure the impact of the
layer choice for our base setup (VGG-M and PASCAL VOC). Traditionally, transfer
learning is performed with the features from the penultimate layer of the network.
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For VGG-M, this represents Layer 19, as shown in Table 2.1. We then chose to
test all layers from the 16th up, since lower layers have high dimensionality and are
difficult to deal with in a setup that adopts an SVM as a classifier. The results for
this experiment are shown in Figure 2.9.

Figure 2.9 – Results for dimensionality reduction (DR-1) with different layers
of VGG-M, described in Table 2.1, in the PASCAL VOC 2007 dataset.

We remark that the output of layer 21 is the most sensitive to the dimensionality
perturbations. This is intuitive, since this feature vector corresponds to the output of
the final Softmax function, and thus to the probabilities for each class from ImageNet.
Reducing the dimensionality of this specific output directly affects the classification
performance, because we are removing high level information.
For all other layers, we observe similar degradation due to the dimensionality

reduction. The standard layer for transfer learning (L19) is, however, slightly more
robust than the others. This layer not only presents the best overall score for our
experiment, also the best relative resiliency to the perturbations, corroborating the
standard practice of taking it for transfer tasks.

2.4.2 Quantization (Q)

The second round of experiments we propose measure the importance of precision
and the internal redundancy in the directions of the feature space. To measure this,
we reduce the size of the feature vectors, from initial 32 ∗mi bits 3, by aggressively
limiting their values. If we remove precision from the representations while observing
small losses in the classification score, we can infer that the most important details
to this task are still encoded by the remaining precision.

Base setup To begin, we apply the quantization stressor to the base setup (VGG-M
and PASCAL VOC). The results for this test are presented in Figure 2.10, where we

3. For 32-bit single-precision floating-point numbers.
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observe that most of the precision in the representations is useless to the classification
task. With both Q-1 and Q-2 setups we were able to limit the number of values to 7
without losing performance, while the original size is 232. This means we can encode
them in 3 bits (instead of 32) without changing the original score.

Figure 2.10 – Results for quantization of features on the base setup (VGG-M
and PASCAL VOC 2007). We can keep vanilla performance while
reducing the feature vectors from 32∗mi to dlog2 7e∗mi and dlog2 4e∗mi

bits, using Q-1 and Q-2, respectively.

However, we also observe that Q-2 performed better than Q-1. While the latter
(Q-1) defines a single set of values to all dimensions, the first (Q-2) tolerates different
scales, defining a different set of values for each dimension. This result indicates
that adaptiveness to scale plays an important role in compressing the representations.
With Q-2 we can further reduce the representation to 4 values, which can be encoded
in 2 bits.
Finally, Q-1 kept vanilla scores with 7 values, while Q-2 only needed 4. This

represents a strong compression of the feature vectors, from 32 ∗m to dlog2 4e ∗m =

2 ∗m bits.

Binary quantization Next, instead of simply studying the quantization strategy
adopted in our experiments, we also propose to systematically erase rightmost bits
from the representation, without actually using their values to guide this reduction.
This is a more rustic quantization, which does not use the features to calculate the
set of values to be used, and can check (1) the importance of a data-aware strategy,
and (2) the effectiveness of a simple and straightforward approach.

The results for the binary quantization are presented in Figure 2.11. For the base
setup (VGG-M and PASCAL VOC), we keep original scores while erasing 63% of the
binary representation of the features (from 32 bits to 12 bits).

Similar performance was observed throughout datasets. However, we remark that
GoogLeNet was more robust to this perturbation, keeping the original scores with 11
bits, and losing a very small amount of it with 9 bits left.
We also remark that having a representation space of a different dimensionality

does not seem to play an important role with this stressor. VGG-M-128 had results
very similar to the ones of VGG-M with the same dataset. And GoogLeNet, having
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Figure 2.11 – Results for erasing rightmost bits on multiple representations.
We can keep vanilla performance for all configurations when reducing
the feature vectors from 32 ∗mi to 14 ∗mi bits. GOOG indicates the
GoogLeNet network.

feature vectors that are 12-times bigger than the ones from VGG-M, and about
390-times bigger than the ones from VGG-M-128, also performed similarly.

Finally, we highlight that a data-drive approach, presented with Q-1 and Q-2, can
compress these representations in a more efficient manner. The best scores with our
binary compression could only reduce the representations from 32 bits to 9, in the
best scenario, without losing most of the classification performance. With only 2 bits,
Q-2 was able to keep almost the same score.

Layer choice Following the same idea behind the dimensionality reduction experi-
ments, we measure the impact of the layer choice for our base setup (VGG-M and
PASCAL VOC) with the quantization (Q-2) strategy. The results for these experiments
are shown in Figure 2.12.

Similarly to our last analysis for the layer choice, we remark that the output of layer
21 is, again, the most sensitive to the dimensionality perturbations. It is important
to highlight, however, that although we reduce the precision of the feature vectors,
their dimensionality remains the same, therefore layers containing less dimensions
can still keep more information.
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Figure 2.12 – Results for quantization (Q-2) with different layers of VGG-M,
described in Table 2.1, in the PASCAL VOC 2007 dataset.

With VGG-M, layers 20 and 21 are the smallest ones, which may help justify
their poor performance. We also observe the impact of the Softmax function on
this stressor, since layer 21 performed much worse than layer 20. The standard
transfer layer (L19) remains fairly robust to the transformation we are applying.
Although it does not present the best scores for all data points of the experiment, it
remains among the top ones, leading on some compression levels. This result, allied
to the one obtained for the dimensionality reduction, helps to validate the choice of
the penultimate layer for transfer learning. With the exception of the Layer choice
experiments, all the results we report in this chapter are obtained using L19.

2.4.3 Feature Compression (FC)

For the third and last round of experiments related to the feature space explo-
ration, we assess the complementarity of the dimensionality reduction (DR) and the
quantization (Q) experiments. By applying both at the same time, we can measure if
the features are redundant both externally (redundant dimensions) and internally
(excessive precision).

On Table 2.3, we summarize the main results for the dimensionality reduction (DR)
experiments on PASCAL VOC 2007, where each column indicates the maximum desired
loss with respect to the original score for an experiment, while the cells indicate the
minimum value which satisfies such requirement. For example, the second line of
the second column (GoogLeNet and DR-1 – 2% ) reveals that with only 10% of the
dimensions preserved, GoogLeNet score drops less than 2%.
Then, we perform the same experience for the quantization (Q) stresses on our

base setup, composed of a VGG-M network and the PASCAL VOC 2007 dataset. We
show these results on Table 2.4, where we see that high compression rates can be
achieved with quantization as well: With only 3 values, that can be represented with
2 bits, we lose at most 1% of the initial score.
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Original Score DR-1 – 2% DR-1 – 5% DR-2 – 1%

VGG-M 76.95% 25% 10% 10%
GoogLeNet 80.58% 10% 5% –
BossaNova 39.59% 50% 25% –

Table 2.3 – Minimum representation rate for dimensionality reduction (DR)
on PASCAL VOC 2007. Each column indicates a requirement, and each line
represents a dataset. The cells reveal the minimum representation needed
for losing at most the indicated percentage. For instance, (DR-1 – 2%) +
GoogLeNet = 10% means that with only 10% of the dimensions, we lose
at most 2% of the initial score with GoogLeNet.

Original Score Q-1 – 1% Q-1 – 4% Q-2 – 1% Q-2 – 3%

VGG-M 76.95% 6 values 4 values 3 values 2 values

Table 2.4 – Minimum representation rate for quantization on our base setup.
Each column indicates a requirement. The cells reveal the minimum
representation needed for losing at most the indicated percentage. For
instance, (Q-2 – 1%) = 3 values means that with only 3 values, that can
be represented with 2 bits, we lose at most 1% of the initial score with
VGG-M.

Finally, we apply our Feature Compression (FC) strategy, which combines di-
mensionality reduction and quantization, to the base setup, and the results for this
experiment are shown in Figure 2.13. The flat region on the top represents com-
binations of parameters from DR-2 and Q-2 with complementary characteristics,
indicating that the features can be compressed in terms of dimension and precision
at the same time. We point, with the circle, square and cross markers, specific
combinations of DR-2 and Q-2 with compression rates of 99.1%, 98.4% and 96.9%,
respectively, while maintaining 97.8%, 99.1% and 99.6% of the original score.

Summary In this section, we have seen that features extracted from deep CNNs are
overrepresented for common transfer tasks. This over-representation is manifested
both in terms of number of dimensions and numerical precision. We were able to
greatly reduce their size with simple strategies—as simple as random goes—without
falling behind on the classification score. This opened up the possibility for easy
and powerful compression schemes, which were successfully explored, demonstrating
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Figure 2.13 – Results for feature compression (FC). We reduce the number of
dimensions and the precision of the feature vectors at the same time.
The circle, square and cross, mark configurations with compression
rates of 99.1%, 98.4% and 96.9%, respectively, while maintaining 97.8%,
99.1% and 99.6% of the original score.

again that the properties we observed can be taken advantage of for creating practical
applications.

2.5 Network Compression

Up to now, our strategy was able to compress the output of a deep network, however,
it would be interesting to be able to compress the whole network. The results achieved
in the last section opened many questions concerning the representations of deep
networks, therefore we propose an exploratory study of network compression schemes,
followed by a loss proposition that takes advantage of our previous results. In the
following, we briefly describe three of the most adopted strategies for this end.

Binarization One idea to create compact networks is proposed by M. Kim et al.
2016, which consists in a neural network with binary parameters, bias terms, input and
intermediate hidden layer output signals, requiring only bit logic for the feedforward
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Figure 2.14 – Representation of our mimic intuition. A pre-trained network
(top, 1) is used to extract image descriptors that are transformed using
the stress framework (top, 2) from (Carvalho, Cord, et al. 2016), and a
smaller network (bottom, 1) can be used to copy the stressed descriptors
(top, 2).

pass. The experimental portfolio is, however, limited, and due to the nature of
their proposal we assume their strategies are mainly applicable to easy tasks, like
MNIST (Lecun et al. 1998).
Similarly, Matthieu Courbariaux et al. 2016 proposed a network with weights

and activations constrained to +1 and -1. During inference time, most of the
multiplications are replaced by 1-bit exclusive-not-or (XNOR) operations. Memory
usage is drastically reduced during test, since we don’t need the precision that was
kept for the gradient during the training stage. This strategy eases the usage in more
difficult tasks, since the learning has the full precision, necessary for small steps.

Changes in representation Different strategies change the representation of floats
in the network. Judd et al. 2015, for example, propose replacing the floating points by
fixed-point variables, changing also the precision of the numbers. Their approach can
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only be used for test time, meaning that the training must be conducted normally,
and the results they achieve with many architectures (LeNet, Convnet, AlexNet, NiN
and GoogLeNet) are congruent with ours, showing that deep networks have excessive
precision.

With the same goal of reducing the network in inference time, Y.-D. Kim et al. 2015
propose one-shot whole network compression, which consists of three steps: (1) rank
selection with variational Bayesian matrix factorization; (2) Tucker decomposition on
kernel tensor; and (3) fine-tuning to recover accumulated loss of accuracy. They test
their setup in mobile devices, and with a AlexNet network, they achieve a speedup of
7.61 on a smartphone Samsung Galaxy S6.

The idea of applying transformations to all layers in inference time of Han et al.
2015 is able to greatly reduce the size of the model without losing precision. Although
they are able to compress the storage space occupied by the model, the memory
requirements during runtime do not see the same benefit, since some values must be
looked up before usage in order to reconstruct the weight matrix. They achieve a
reduction of 35 for weight storage requirements for AlexNet and of 49 for VGG-16,
besides presenting measures of speedup and energy efficiency for their proposals.

Mimic learning Another strategy for creating compressed networks is mimic learn-
ing. This technique consists in training a big network, and then training a student,
usually a smaller network, to copy features from the big one. If correctly applied, in
the end, a smaller network which produces features similar to the teacher’s features
is expected.

A primordial version of this idea is presented by Bromley et al. 1994. Their proposal
is to use two siamese networks (i.e. identical networks, with shared weights), in order
to approach the task of signature verification. Their intuition lies on the fact that by
forcing the proximity, in the feature space, of two signatures of the same person, we
are encouraging the model to build instance-level invariance, being able to recognize
different signatures of the same person instead of only the exact same one.
Building an ensemble of models is another way of improving performance. An

ensemble is composed of multiple instances that may not be computationally expensive
individually, but their combined execution generally is. Modern architectures, like deep
neural networks, have many parameters and dependencies on previous computation,
and building an ensemble of these can be costly. These characteristics make it difficult
to take advantage of the full potential of such systems in constrained environments,
like mobile phones and smart devices, emerging from the Internet of Things’ era.

Aiming to solve this problem, Buciluǎ et al. 2006 introduced a method for compress-
ing ensembles into smaller, faster models, without considerable loss in performance.
Their approach consists of synthetically augmenting the dataset by exploiting neighbor
relations between samples, and using an ensemble to annotate the new data.

One of the most known recent techniques for mimic learning is model distillation,
presented by Hinton et al. 2015. Their approach uses the probabilities of a teacher
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model to train a student network. Distillation’s intuition is to optimize a weighted
average of two different objective functions, the first one being the cross entropy of
soft targets (outputs of Softmax), computed with high temperature, and the second
one the cross entropy with the labels (classification task).

Other strategies have been built upon these propositions, improving and studying
their properties. Because many of them are not sufficiently related to this thesis,
we refer the reader to the work of Cheng et al. 2018 for a better (but not complete)
coverage.

2.5.1 Relaxed mimic losses

Contrary to other approaches, mimic learning can take advantage of a teacher
network that has better scores for a given task. Furthermore, it does not rely on
hand-crafted strategies that need to be heavily tuned in order to be applied to a
problem. The application of this kind of method to real-world problems is clear once
we start considering the cost of deep CNNs, for example: it would not be feasible
to have hundreds of Graphics Processing Units (GPUs) inside an automated vehicle
in order to provide real-time recognition of its surroundings, nor having to wait for
longer periods of time in order for a cellphone to correctly tag the contents of a
picture.
In these contexts, a smaller network could be important, as common hardware

would be capable to run it faster and it would be overall cheaper to deploy. When
using mimic learning, one can arbitrarily choose the number of layers of the student
network, being able to control the depth of the network and, consequentially, the
number of steps that depend on previous calculations.

Therefore, in light of the results discussed in Section 2.4, we hypothesize that instead
of directly copying the descriptors extracted by the network, it should be possible
to copy stressed descriptors by adopting one of our stressors as the transformation
depicted in Figure 2.14. A standard mimic strategy would adopt the identity function
instead. Should we succeed in this task, we will have a compression scheme capable
of reducing the model and the size of the descriptors it generates, while maintaining
good performance.
In particular, we are interested in testing whether the quantization stressor could

be used in a mimic scheme. Our observations show that fine precision is often
not important for good performance on classification, therefore, when adopting a
teacher-student learning scheme, it may be better for the student to accept small
deviations from the teacher’s output, instead of penalizing every small difference in
their outputs.
Instead of simply applying the quantization stressor to the teacher network and

mimicking its features, we devised a family of relaxed regression losses that are able
to approach the scores of both models without forcing them to be the same. For the
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relaxed L1 loss, this is equivalent to two opposed Hinge functions, with a margin
term, as depicted in Figure 2.15.

Figure 2.15 – Our idea of a relaxed regression loss. The relaxed L1 loss is
equivalent to two opposed hinge functions spaced by a threshold. This
threshold removes the penalization for feature vectors that are close to
the original ones.

We provide the relaxed version for the L1 and L2 losses, shown in Equation 2.1
and Equation 2.2, where α represents the thresold and y the output of the network.
This strategy could be extended to many other regression losses, since it consists in
adding a margin centered at 0 in order to remove the sensibility of the gradient when
small differences are detected.

LL1 =
N∑
i=1

|yi,teacher − yi,student|

LL2 =
N∑
i=1

|yi,teacher − yi,student|2
(2.1)

LRL1 =
N∑
i=1

[|yi,teacher − yi,student| − α]+

LRL2 =
N∑
i=1

[|yi,teacher − yi,student| − α]2+

(2.2)
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2.5.2 Exploratory experiments

Teacher-student analysis In order to conduct our exploration, we propose a toy
example with the setup described in Figure 2.14, but using simpler networks and
datasets. We adopt the LeNet-5 network (LeCun et al. 1998), containing 145,000
parameters, and the CIFAR-10 dataset (Alex Krizhevsky 2009), containing 60,000
images.

Initially, an L2 regression loss is used, with the identity transformation instead of
our stressors, forcing the student network to copy the probabilities generated by the
teacher network. As for the student, we chose to use the same network, but training
it from scratch and reducing the number of filters in each layer, effectively reducing
the number of parameters.

The results for this initial experiment, shown in Table 2.5, confirm that the student
network can be much smaller than the teacher network, while being able to copy the
teacher’s performance in its almost totality. This result motivates further exploration
of mimic learning.

#params for student Relative score∗

53.3k 97.8%
21.9k 97.7%
9.8k 95.6%
4.6k 73.0%

Table 2.5 – Results for a simple mimic strategy, using LeNet-5 and CIFAR-10,
with an L2 regression loss. The teacher network has 145,00 parameters
and achieves accuracy of 80.10%. We present in this table relative scores
with respect to the teacher network.

Mimicking with relaxed losses We propose a simple experiment to verify the
effectiveness of our strategy for mimic learning. This time, we adopt a VGG-16
network pre-trained on ImageNet as the teacher. Instead of creating smaller networks
as students, we chose to adopt the same architecture, but randomly initialized, in
order to measure the effects of the relaxation on the regression losses we test. In
other words, we are following the scheme in Figure 2.14, but with an identity function
for T .
Initially, we test the L1 and the L2 losses, described in Equation 2.1, where N

indicate the number of dimensions of the feature vectors — the feature space sizes
and number of parameters for the teacher and the student are the same, since we
adopt the same network architecture for them.
Then, we test the RL1 and the RL2 losses, which are the relaxed versions we

propose, described in Equation 2.2. To create them, we add a margin term to the
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original L1 and L2 losses, which will create a safe margin around the desired values,
allowing small deviances to have zero loss.

For training our models, we adopted a simple setup: We train each student for 25
epochs on the ILSVRC 2012 training set, with α = 5 ∗ 10−2 and the learning rate of
10−4 with the Adam optimizer (Kingma et al. 2015). Although these choices might
not be not optimal for the standard task of ImageNet classification, we chose not to
cross-validate them, since the goal is not to achieve top scores, but to demonstrate
the effects of our losses in the mimic process.
In Table 2.6, we show the results for the relaxed loss experiment. Even with our

limited protocol, and without cross-validating our hyper-parameters, we observe small
but consistent gains with the relaxed version of the regression losses. We ran this
experiment two times, and for both cost functions, our modifications were able to
improve the results over the non-relaxed versions of the losses.

Loss Score Relative score∗

L1 55.09% 100.00%
RL1 55.18% 100.16%
L2 55.61% 100.94%
RL2 55.68% 101.07%

Table 2.6 – Results for a simple, large-scale mimic strategy, using VGG-16
and ImageNet, with different losses. All experiments ran for 15 epochs
with a fixed set of hyper-parameters that were not cross-validated. We
present absolute classification scores on the ILSVRC 2012, as well as
*relative scores with respect to the L1 loss mimic.

2.6 Conclusion

In Section 2.1 and Section 2.2, we presented approaches related to the usage of
deep features in problems from the Computer Vision (CV) community. In modern
applications, deep models have been used as a black box, without a clear understanding
of its inner workings nor the nature of the representations they create. Allied to
transfer learning, the power of deep learning was harvested to achieve state-of-the-art
performance in many tasks, but few studies were dedicated to understanding their
properties.
Our goal was to evaluate the robustness of deep representations by introducing

perturbations to feature vectors extracted from upper layers of deep networks. We
explored in depth the resiliency of features transferred from the VGG-M model to
the Pascal VOC 2007 dataset. For this objective, we introduced, in Section 2.3, a
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stress framework capable of reducing the dimensionality and quantizing the vector
space used during the transfer process.
The results shown in Section 2.4 revealed a high level of redundancy in deep

representations, indicating they may be heavily compressed. In our experiments, we
achieve a compression rate of 98.4%, while losing only 0.88% of the original score for
Pascal VOC 2007. To ensure our conclusions are not dataset- nor model-specific, our
two main approaches – dimensionality reduction and quantization – were extensively
tested, with supplementary results for MIT-67, Food-101, GoogLeNet and BossaNova.
We observed that despite being more compact, deep architectures are also more

robust to perturbations, when compared to approaches based on Bag-of-Words (BoW).
Those findings are specially useful for image retrieval and metric learning (Le Barz
et al. 2015), in which the size of the feature vector is crucial to achieve fast response
times, and for applications involving portable devices or remote classification, in
which data must be efficiently transferred over the network.

In Section 2.5 we have explored strategies for transferring the knowledge from a
teacher network to a student network through mimic learning. We have shown in our
initial toy experiments that smaller networks have the ability to distill the knowledge
of a bigger teacher model without losing much of its performance. This results
corroborates our observations in Section 2.4. In another experiment, we have tested
an intuitive idea for relaxing regression losses in order to perform mimic learning,
achieving promising results that can be further explored in future work.

Finally, the experiments we have shown in this chapter can easily see their way to
many real-world applications. In the context of remote classification, for example,
the compression of features is fundamental. Modern smartphones have enough
computational power to run deep networks in inference mode without struggle, but
implementing such a system can quickly become infeasible in terms of data transfer
costs. This is especially true for remote context-based information retrieval, for which
the embedding of one image has to be compared to a huge number of samples in
the retrieval pool. For this particular situation, having compact descriptors not only
reduce the cost of transferring them through the network, but also greatly reduce the
search time.
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Chapter abstract
In this chapter, we tackle the cross-modal alignment problem for visual and
textual data. Our target application is the large-scale retrieval task (image to text,
and vice versa). The proposed approach, AdaMine, brings 2 main contributions:
(1) an auxiliary regularization loss capable of semantically organizing latent
spaces via multitask learning; and (2) an adaptive triplet sampling strategy that
provides consistent gradient information during training. The effectiveness of
our method is demonstrated on the Recipe1M dataset, composed of one million
image-recipe pairs and additional class information. We improve the state-
of-the-art on this dataset and empirically demonstrate the benefits of implicit
multitask learning for the retrieval task.

Part of the work in this chapter led to the publication of a conference paper:
— Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, Nicolas Thome, and

Matthieu Cord (2018). “Cross-Modal Retrieval in the Cooking Context: Learning
Semantic Text-Image Embeddings”. In: The ACM conference on Research and
Development in Information Retrieval (SIGIR)
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3.1 Introduction

We discussed in Chapter 1 the image retrieval task. Its goal is to retrieve an image
based on a specific criterion and a query (usually another image). An easy way to
achieve this is to suppose the existence of a latent space in which a specific measure
can be used to assess the distance between any two points. Each of these points,
inside this latent space, can be the output of a CNN for a specific image, for example.
These spaces usually have interesting properties of redundancy and excessive

precision (see Chapter 2). Therefore, the objective of this chapter is to present a
way of refining deep models in order to enrich their feature space and obtain better
descriptors.

Considering the image retrieval task, and the fact that we can use a CNN to obtain
feature vectors from its feature space, the question to be asked is: how to correctly
organize it? And the answer is not as simple as it sounds: changing the weights of
the CNN in a way that it can perform the transformation from the image space to
this latent one. In order to do so, a fine-tuning approach, discussed in Section 2.2,
can be adopted.

However, the problem becomes more complex when we start considering a scenario
with multi-modal data. Instead of dealing with images only, our target application
contain images and texts that should be correctly aligned in this space. For this
situation, it is no longer possible to train a single CNN that can learn the image-
text correspondence, since this model will only be able to deal with one mode. A
straightforward way of taking up this issue is to adopt alignment learning approaches,
which introduce a loss into this space responsible for matching any two vectors.

One of the main candidates for this is metric learning, whose goal is to find a
transformation that can map an input into a point inside a latent space. Inside
this space, a pre-chosen metric (e.g. Euclidean) can be used to compare any two
points. The classical cost functions used for this purpose include the pairwise and the
triplet, in which a pair and a trio of examples are required for each training iteration,
respectively.

After projecting different modalities into a representation space, we directly align
them using metric losses. Contrary to the standard multi-task approach of adding
multiple heads, each specialized to a different objective, this strategy does not add
cumbersome extra parts to the model, that might be heavy in number of parameters
and are usually discarded after being trained.
The benefits of these approaches become more evident once we start considering

the difficulty of data annotation since, in a metric learning scheme, one can take
advantage of inequalities between image distances. In practice this means we only
need to indicate whether two images should be similar or not, or that one given pair
of images should be closer in the representation space than another one, instead of
actually labeling the samples.
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In this chapter, we will adopt a fine-tuning setup and explore metric learning
approaches for the cross-modal alignment. This will allow us to refine not only the
information circulating inside the chosen architectures, but also to align their feature
vectors in a shared latent space. The rest of this chapter is organized as follows:

— In Section 3.2 we discuss the alignment learning issue, as well as metric learning
approaches. There are two main groups of studies we are interested in: the first
one adopts metric losses but focuses on improvements in the network architecture,
and the second one proposes new cost functions to address shortcomings commonly
found on the popular ones. In order to provide a broader understanding of the
roles of both groups in this research, we will briefly describe one work from the
literature for each topic, and focus on the two losses that are the most related to
our contribution: the pairwise and the triplet;

— Then, in Section 3.3 we introduce a new constrained learning scheme to align
image and text in a semantic space for applications to cross-modal retrieval. Our
method, called AdaMine, encompasses the following contributions: A double
loss composed of instance-based and semantic-based triplets, as well an adaptive
sampling strategy that allows both losses to be correctly weighted and to work
together in reorganizing the feature space;

— AdaMine is then tested in Section 3.4, achieving a 5-fold improvement over the
state-of-the-art of the adopted large-scale cross-modal retrieval task. We perform
an extensive set of analyses to show the role of each part of our contribution,
revealing its flexibility, and showing it does not require in-depth tuning of hyper-
parameters in order to obtain good results;

— Finally, in Section 3.5 we draw the conclusions of this chapter, as well as the
perspectives to future work related to AdaMine.

3.2 Related work

Building cross-modal embeddings between text and images is a challenging task in
Computer Vision. The resulting semantic representations are essential for various
applications, as visual question answering (Antol et al. 2015), image-caption retrieval
(Kiros, Zhu, et al. 2015), and image-caption generation (Xu et al. 2015; Karpathy
et al. 2015). Some of these tasks require an optimal alignment between matching
pairs of items in order to obtain relevant ranking and retrieval, others do not align
the modalities, but adopt an in-between task.

To tackle this problem, learning-based approaches have been developed using cross
correlation alignment, e.g. CCA-based (Hotelling 1936; Tran et al. 2016) and its deep
extensions (Andrew et al. 2013; Yan et al. 2015), or metric learning strategies based
on pair or triplet constraints to learn cross-modal embeddings (Kiros, Salakhutdinov,
et al. 2015).
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As an example of ad-hoc approach, Joulin et al. 2015 experimented with 99.2
million Flickr photos with associated titles, hashtags, and captions. They trained
GoogLeNet’s and AlexNet’s variants, adopting a different strategy to speed up the
training phase: only the weights that correspond to classes present in a given training
batch are updated when it’s presented to the network. Their model was able to predict
word similarity and some correspondence between different languages (FR-EN) only
by learning from image similarity. However, they adopted a simple one-versus-all
logistic loss. Their claim is that a pairwise ranking loss promotes sparse updates,
which significantly slows down training.

Being able to deal with multi-modal data is important for many modern applications.
In particular, for automated vehicles that need to understand their environment based
on information coming from different sources and in different formats, such as Lidar
sensors and RGB images. For example, works like the one of Audebert et al. 2018
investigate fusion strategies for using data from different modalities in order to
perform semantic labeling.
For many tasks, semantic information is available and taken advantage of. El

Mahdaouy et al. 2018, for example, use textual semantic information in order to
perform the link prediction task in complex embeddings, and Salvador et al. 2017
exploit semantic information with the help of a classification head attached to the
model.

Their application involves the tasks of ranking and retrieval and, in the literature,
several surrogates for the inequality constraints presented below (Equation 3.1) have
been proposed, like (Weinberger et al. 2009; Xing et al. 2003; Law et al. 2013), from
which we highlight metric learning approaches, discussed in the this section.

Notations Let xv ∈ V the visual input from space V and xt ∈ T be the text input
from space T . Deep mappings gv : V → F and gt : T → F provide alignment between
V and T , that are compared using the distance function d(xv, xt) = ||gv(xv)−gt(xt)||2 1.
Assuming Q = {xq} to be the set of queries, Pq = {xp} the set of relevant (positive)
samples with respect to query xq, and Nq = {xn} the set of irrelevant (negative)
samples with respect to query xq, the ranking constraints for all queries are

∀xq,∀xp,∀xn, d(xq, xp) < d(xq, xn) (3.1)

3.2.1 Pairwise alignment

Xing et al. 2003 uses an objective function minimizing all the distance between
positive pairs while maintaining the sum over all negative pairs large enough. Initially
proposed for linear embedding, this approach has been improved using margin scheme
and deep nets embedding (Hadsell et al. 2006). The resulting pairwise loss function

1. For simplicity, we will consider identical notations for distances on T ×V → R+ and V ×T →
R+.
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Lpw for θ including all the parameters of gv and gt is presented in Equation 3.2, with
y = 1 (resp. y = 0) for pos. (resp. neg.) pairs, the hinge loss [ψ]+ = max(0, ψ), and
α the margin. The resulting cost is linearly proportional to the computed distance
between two items, conditioned to α.

Lpw(θ, xq, x) = y · d(xq, x) + (1− y)
[
α− d(xq, x)

]
+

(3.2)

For large scale visual and textual embedding, Salvador et al. 2017 adopts the
pairwise formulation. They also introduce a dataset, to which they add semantic
information corresponding to classes. This additional information is used to learn a
classifier, which is exploited to regularize the learning procedure of their cross-modal
embedding. However, noticing that brute pairwise optimization yield poor results,
they combine it with a classification strategy for which they have additional supervised
data. The latter is responsible for regularizing their embedding framework.
A different optimization strategy for cross-modal embedding is provided by the

Canonical Correlation Analysis (CCA) (Hotelling 1936) which aims at maximizing
the correlation in F between positive pairs only. CCA and its variations like Kernel-
CCA (Lai et al. 2000; Bach et al. 2002) and Deep-CCA (Andrew et al. 2013) have
been successfully applied to align text and images (Yan et al. 2015).
We adopt a pairwise cost approach as baseline in Section 3.3, and we propose a

more efficient learning strategy built on triplet-based approaches, described in the
following.

3.2.2 Triplet-based learning and extensions

A more natural surrogate of the ranking constraints in Equation 3.1 is to consider
triplets composed of a query, a relevant, and an irrelevant sample. This strategy
is similar to the Large Margin Nearest Neighbor loss (Weinberger et al. 2009), but
without explicitly penalizing large distances between positive samples, and has been
successfully used to learn Visual Semantic Embeddings (VSE) (Kiros, Salakhutdinov,
et al. 2015) with applications to captioning as a text retrieval task (Karpathy et al.
2015).

Contrarily to pairwise, the triplet loss (Equation 3.3) defines a margin between two
opposing samples, forcing positive and negative pairs to cooperate. In other words,
no explicit constraint is imposed on the scale of the manifolds being created, but only
on their interacting boundaries.

Ltri(θ, xq, xp, xn) = [d(xq, xp) + α− d(xq, xn)]+ (3.3)

One example of use case for the triplet loss is the work of Arandjelović et al. 2016.
They initially propose an adaptation of the Vector of Locally Aggregated Descriptors
(VLAD, Jégou et al. 2010), described in Equation 3.4, as a derivable layer in a neural
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network. For each cluster center ck, VLAD will generate a vector aggregating the
differences between ck and all feature vectors xi belonging to the Voronoi cell of ck.
This last condition is met by the hard assignment in Equation 3.5.

V (j, k) =
N∑
i=1

σ(xi, k)(xi(j)− ck(j)) (3.4)

σ(xi, k) = 1k=argmin
l

‖xi−cl‖22
(3.5)

For neural networks, the main problem with this approach is the non derivability
of the hard assignment operation. The solution Arandjelović et al. 2016 found is to
replace the hard assignment by a Softmax function, expanding and manipulating the
distance to obtain the first part of Equation 3.6, where wk = 2αck and bk = −α ‖ck‖2.

N(j, k) =
N∑
i=1

ew
T
k xi+bk∑

k′ e
wT
k′xi+bk′

(xi(j)− ck(j)) (3.6)

Contrary to VLAD, NetVLAD decouples wk, bk and ck during training, treating
wT
k xi+bk as a fully connected activation, and learning these parameters independently.

To test this layer, Arandjelović et al. 2016 chose the task of place retrieval, with pictures
extracted from Google Street View Time Machine. An important characteristic of
their data must be considered, however: images are annotated with their approximate
location on the map, but no information about the camera position is provided. This
means that two pictures having the same geographic position may be facing different
directions, capturing different buildings and different scenes. A consequence of this
lack of information is that one can only have potential positive pairs (i.e. being in the
same position, they may be depicting the same object, but maybe not), and definite
negative pairs (i.e. the images come from distant locations, definitely not the same
place).

To overcome this issue, they adapted a triplet loss to consider the weakly supervised
scenario. In their version, shown in Equation 3.7, for an image query q, only the best
matching potential positive pair is used, assuming that for each image at least one true
positive pair is available. This is equivalent to applying a hard-negative-margin-like
strategy for the positive pairs, by only selecting the easiest positive sample each time.
All the negative pairs nj are then forced to be away by a margin m, and the hinge loss
h is applied to ensure only the pairs violating this constraint are considered during
the learning phase.

Lnetvlad =
∑
j

[min
i
D2
q,pi

+m−D2
q,nj

]+ (3.7)

Another way of extending pairwise and triplet losses is to develop quadruplets, which
may offer more flexibility for modeling relative constraints and hierarchies, as shown
by (Law et al. 2013). For example, quadruplet-like approaches with independent
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pairwise distances are adopted by (W. Chen et al. 2017; Ustinova et al. 2016),
while (Huang et al. 2017) construct them with symmetric triplet-like losses. Often,
quadruplets are combined with either a pairwise or a triplet loss, for regularization or
semi-supervision (W. Chen et al. 2017; Huang et al. 2017).
Other proposals, like (Hoffer et al. 2015; L. Wang et al. 2016), tackle alignment

or multimodal tasks, in manners that can be seen as extensions of Siamese net-
works (Bromley et al. 1994), where the same parameters are used for forwarding
corresponding inputs.
Many strategies can be adopted for improving the performance of triplet losses.

N-pair (Sohn 2016)’s idea, for example, is to reduce the burden of forwarding triplets
through the network and increase convergence with an in-batch negative sampling
strategy.
Song et al. 2015, however, modify the triplet loss, proposing the use of many

negative examples for a positive pair of images. They also crawled a dataset (Online
Products) from eBay, which is public and maintained by them. Their method was
tested on Online Products, CUB-200-2011 and CARS196, achieving state-of-the-art
performance on all three datasets. Their technique enables one to use more information
during training, and possibly speeds up the training, since many distances are used
for one training step.

On the work of Rippel et al. 2015, a new magnet loss is proposed. The idea behind
it is to act on whole clusters instead of pairs or triplets; this approach removes the
constraint of having a single cluster per class, allowing the same class to be present
in different parts of the representation space – a desirable property, since images from
a specific class may be strongly related to images from another class (e.g. on the cat
class, a cat with a human, and on the dog class, a dog with a human; these examples
are semantically related, and should be close in the representation space). Formally,
their stochastic loss is defined by

Lmagnet =
1

MD

M∑
m=1

D∑
d=1

− log
e−

1
2σ̂2
‖rmd −µ̂m‖

2

2
−α∑

µ̂ :C(µ̂)6=C(rmd ) e
− 1

2σ̂2
‖rmd −µ̂‖

2

2


+

where rd represents the deep representation of the input, µ̂m the cluster’s means, σ̂
its variance, and C(·) the function that returns the class of its input.

3.2.3 Discussion about metric strategies

Song et al. 2016 explain that both pairwise and triplet losses have shortcomings
that are not unusual. They argue that in specific situations, as the ones shown in
Figure 3.1, the loss may desorganize the feature space, making it less concise.
In particular, for the pairwise approach, a pair with negative relation may be

pushed outside of its cluster, in attempt to minimize the loss (see Figure 3.1a). As
for the triplet one, depending on the position of the positive and negative pairs, the
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direction of the update may also push the anchor towards a cluster of a different class
(see Figure 3.1b).

This problem is mainly due to the fact that each positive pair is bound to an
arbitrary negative pair that may not be adequate for learning. With this in mind,
they propose an extension of the triplet loss capable of picking negative pairs close to
the positive one, avoiding situations in which a single badly-chosen example could
disturb the representation space.

Contrary to the classical triplet loss (Equation 3.3), their approach (Equation 3.8)
uses the entire training batch to mine negative examples. For each positive pair in
the batch (i, j) ∈ P , it takes advantage of all related negative pairs (i, k), (j, l) ∈ P ,
penalizing the ones violating the margin α proportionally to their distance to it.

L̂LSFE(i, j) = log
( ∑

(i,k)∈N

exp{α−D2
i,k}+

∑
(j,l)∈N

exp{α−D2
j,l}
)
+D2

i,j

LLSFE =
1

2P
∑

(i,j)∈P

max(0, L̂LSFE(i, j))
2

(3.8)

Although it is clear that such an approach can reduce these problems, it quickly
becomes difficult to optimize, as it might take a high number of negative samples into
account, and even if a batch-wise application can be envisaged to avoid calculating
too many negative pairs, it will still increase the cost of back-propagating the error
through the network. Our proposal, presented in the following section, includes an
adaptive selection of triplets that allow us to also adapt the gradient during the
training procedure, ignoring uninformative samples.

3.2.4 Multi-task approaches

Recently, several deep learning schemes have been proposed to handle multi-task
objectives. L. Wang et al. 2016 adopt triplet-based instance and structure-preserving
losses, jointly optimizing retrieval and local neighborhood in the feature space, while
Kokkinos 2017 propose a multi-dataset, multi-task architecture, with a shared trunk
and multiple branches that are specific to each task. The main idea is that related
tasks can benefit from each other.
The approach of Salvador et al. 2017 to learn cross-modal embeddings is to add

a semantic regularization objective, forcing the embeddings to solve a multi-task
problem composed of the pairwise retrieval loss Lpw and a classification loss based
on class information associated with each sample. This is accomplished by adding a
new head to the model, specialized on the classification task, that tries to predict the
class information from the joint space F , similarly to Kokkinos 2017’s proposal. The
intuition behind the method is that the added objective will enforce some semantic
structure into the joint embedding, which should improve generalization capabilities
and lead to better retrieval performances.
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(a) Pairwise corner case
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(b) Triplet corner case
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(c) LiftedSFE proposal

Figure 3.1 – Shortcomings of pairwise (Figure 3.1a) and triplet (Fig-
ure 3.1b) losses. In this figure, blue arrows represent negative pairs,
red arrows positive pairs and pink arrows the direction of movement of
examples belonging to three classes: circle, square and diamond. For the
pairwise approach, a pair with negative relation may be pushed outside
of its cluster in attempt to minimize the loss (see Figure 3.1a). As for
the triplet one, depending on the position of the positive and negative
pairs, the direction of the update may also push the anchor towards a
cluster of a different class (see Figure 3.1b). The Lifted SFE approach
uses the closest negative pairs to avoid these problems (see Figure 3.1c).
(Adapted from Song et al. 2016)
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However, one clear advantage of metric learning strategies, not explored by these
works, is their independence. Losses yielded from them usually do not need specific
parts to be added to the architecture in order to be used, and therefore integrating
multi-task information into the model is as straightforward as designing a new loss
for this task, without having parts that are task-specific.

3.3 AdaMine

We argue, then, that such explicit multitask strategies, as the one adopted by
Salvador et al. 2017, may not be the best solution to improve the retrieval task. First,
the extra head is cumbersome as it carries a possibly large number of parameters that
will be discarded at the end of the training procedure as the classification is not the
main goal. Moreover, we suspect the classification head to be able to perform its task
without strongly modifying the joint space F due to the sheer complexity carried by
its number of parameters. To avoid these drawbacks, we propose an implicit multitask
objective which ensures a semantic structure on the joint space F , as presented in
the next section.
In our proposal, we adopt the triplet-based strategy as the main option for our

cross-modal embedding learning. Similarly to (Sohn 2016), we carefully study how to
build mini-batches composed of relevant matching pairs. Furthermore, we consider
multitask learning as a way of exploiting additional training data about these pairs,
as well as an adaptive mining strategy further detailed in Subsection 3.3.3.

Our global architecture is depicted in Figure 3.2. Based on two deep branches for
textual and visual encoding, we introduce our learning scheme in the latent space.
Detailed in Figure 3.3, we integrate both retrieval objective and semantic information
in a single crossmodal metric learning problem, minimizing:

Ltotal(θ) = Lins(θ) + λLsem(θ) (3.9)

where Lins is the loss associated with the retrieval task, and Lsem is the loss coming
with the semantic information. In our framework, it is expressed as an implicit
classification task. One can see this second term Lsem acting as a regularization over
the Lins optimization.

In the following, we first develop our choice for the retrieval loss. Next, we explain
our proposition for the semantic loss Lsem. Then, we explain our algorithm to manage
efficient stochastic gradient descent over this double-triplet loss optimization.

3.3.1 Retrieval loss

Lins(θ) is defined using a surrogate of the ranking constraints. We propose two
losses for the retrieval Lins. First, a pairwise baseline Lpw++, for which we add a
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Figure 3.2 – AdaMine overview. Our model is based on deep textual (left) and
visual (right) embedding branches that are mapped into a common
latent representation space. A double-loss is used to train the whole
architecture, mixing instance-level and semantic relations into a new
regularization-based learning strategy. The main application relates to
the large-scale Recipe1M crossmodal retrieval task, for finding pictures
from recipes, and vice versa.

positive margin to the pairwise loss adopted in (Salvador et al. 2017), as proposed
by (Hu et al. 2014):

Lpw++(θ, xq, x) = y
[
d(xq, x)− αpos

]
+

+ (1− y)
[
αneg − d(xq, x)

]
+

(3.10)

with y = 1 (resp. y = 0) for pos. (resp. neg.) pairs. The positive margin αpos allows
matching pairs to have different representations, thus reducing the risk of overfitting.
For carefully chosen αpos and αneg, we can still guarantee that a zero loss implies a
perfect ranking. However, because we tackle the crossmodal retrieval problem, and
the triplet loss is a more natural surrogate for the ranking function, when compared
to the pairwise one, our second proposition is a bi-directional instance-based triplet
loss Ltri:

Lbitri(θ) = Ltri,image,text,text(θ, xq, xp, xn) + Ltri,text,image,image(θ, xq, xp, xn) (3.11)

This approach is instance-based because relations between the anchor xq and its
triplet counterparts xp and xn are defined by whether they come from the exact same
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Figure 3.3 – Close-up representation of the latent space F in which text (com-
ing from left) and images (coming from right) are embedded. Two cost
functions work together to align them: Lins is instance-aware and aligns
corresponding samples, and Lsem is semantic-aware and provide class
information for clustering.

pair {image,recipe} or not, and bi-directional because both modalities are considered
for Q 2.

3.3.2 Semantic loss

We consider that additional semantic information is available during the learning,
here expressed as classification labels (following Salvador et al. 2017). As defined
in Equation 3.9, our Lsem is acting as regularizer capable of taking advantage of
semantic information in the crossmodal task, without adding extra parameters to
the architecture nor graph dependencies. To leverage class information, we construct
triplets that optimize a surrogate of the k-nearest neighbor classification task. Ideally,
for a given query xq, and its corresponding class c(xq), we want its associated closest
sample x?,q in the feature space F to respect c(xq) = c(x?,q) ∀q ∈ Q.

A natural approach for enforcing this constraint into the space is to optimize a
class-aware metric learning loss such as the one proposed in (Weinberger et al. 2009).
We thus propose a triplet loss Lsem in order to have a semantic structure to the
space. Lsem is similar to Ltri (Equation 3.3), but it has different interactions between

2. Since the problem is completely symmetrical in modalities, we simply consider all triplets of
the form (Q,Pq,Nq) ∈ (V, T , T ) and (Q,Pq,Nq) ∈ (T ,V,V).
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samples, as defined by the following sets of semantic positives Pq,s and semantic
negatives Nq,s:

Pq,s = {x : c(x) = c(xq)}
Nq,s = {x : c(x) 6= c(xq)}

(3.12)

Contrary to the classification machinery adopted by (Salvador et al. 2017), Lsem
optimizes semantic relations directly in the latent space F without changing the
architecture of the network, as shown on Figure 3.3. This promotes a smoothing
effect on the space by encouraging instances of the same class to stay closer to each
other, instead of heavily overfitting to match their instance-based counterpart.

3.3.3 Adapting SGD update over Mini-batches

As commonly used in Deep Learning, we use the stochastic gradient descent (SGD)
algorithm which approximates the true gradient over mini-batches. Several strategies
can be explored to compute the update step in the context of the triplet loss. We
present here the two main strategies found in the literature (average and maximum)
and discuss their limitations. This leads us to our proposed gradient update step
which we call adaptive. In the following, δ refers to the update term that is applied
to the set of parameters at each mini-batch update, i.e., θ(t+ 1) = θ(t)− ηδ.
The average strategy computes the loss functions considering all of the negative

samples available, averaging each one by the number of samples used:

δavg =
∑
xq∈Q

( ∑
xp∈PB

q,v

∑
xn∈NB

q,v

∇Ltri(θ, xq, xp, xn)
βr

(3.13)

+
∑

xp∈PB
q,s

∑
xn∈NB

q,s

λ
∇Lsem(θ, xq, xp, xn)

βs

)

Where βr = |Q| · |NB
q,v| · |PB

q,v| and βs = |Q| · |NB
q,s| · |PB

q,s|, represent the total number
of triplets for each loss. This is the strategy used in (Karpathy et al. 2015; Kiros,
Salakhutdinov, et al. 2015). However, as remarked in (Faghri et al. 2017), the average
strategy can lead to vanishing gradients since, as the optimization progresses, most
of the triplets tend to contribute less (or not contribute at all) to the error.

To circumvent the vanishing gradient problem, the maximum strategy replaces
the sum over all negatives by the selection of the hardest negative sample for each
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positive pair, as described by (Faghri et al. 2017). It can be directly applied to our
average triplet loss, as follows:

δmax =
∑
xq∈Q

( ∑
xp∈PB

q,v

max
xn∈NB

q,v

∇Ltri(θ, xq, xp, xn)
βr

(3.14)

+
∑

xp∈PB
q,s

max
xn∈NB

q,s

λ
∇Lsem(θ, xq, xp, xn)

βs

)

We then consider |NB
q | = 1 for calculating βr and βs.

While Lmax directly optimizes the Recall@1 metric, as explained in (Faghri et al.
2017), it takes a few epochs to “warm up” at the beginning of the learning process.
This phenomenon is explained by the very limited amount of triplets contributing
to the gradient, when many are still violating the constraints. We also believe this
problem is amplified as the size of the training set grows.

Adaptive AdaMine weighting To tackle these issues, our proposed adaptive strat-
egy modifies δavg, discarding triplets with uninformative information (i.e., zero loss):

δadm =
∑
xq∈Q

( ∑
xp∈PB

q,v

∑
xn∈NB

q,v

∇Ltri(θ, xq, xp, xn)
β′r

(3.15)

+
∑

xp∈PB
q,s

∑
xn∈NB

q,s

λ
∇Lsem(θ, xq, xp, xn)

β′s

)

with β′r and β′s compensating for triplets that are not contributing to the cost:

β′r =
∑
xq∈Q

∑
xp∈PB

q,v

∑
xn∈NB

q,v

1Ltri 6=0

β′s =
∑
xq∈Q

∑
xp∈PB

q,s

∑
xn∈NB

q,s

1Lsem 6=0

(3.16)

This strategy combines the benefits of δavg and δmax. At the very beginning of
the optimization, all triplets contribute to the cost and, as constraints stop being
violated, they are dropped. At the end of the training phase, one would expect δadm
to behave similarly to δmax, because most of the triplets will have no contribution to
it, leaving the hardest negatives to be optimized.

Some methods propose to reinforce the influence of negative samples by changing
the loss function (Song et al. 2016; Lin et al. 2017). We prefer, in our approach, to
explicitly define the weights associated to the gradients of the negative samples.

An important problem of multitask learning, properly presented and addressed by
(Kokkinos 2017), is the possibility of bias in parts of the architecture that are shared
between tasks. When the amount of samples for different tasks is unevenly balanced,
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so are the gradients responsible for the updates, leading to a set of parameters that is
prone to favour the most frequently updated tasks. In that regard, an added benefit
of δadm is due to the fact that each loss is independently normalized by its number of
active triplets, keeping the trade-off between Ltri and Lsem unaffected by the noise
induced by the triplet sampling. This provides a natural solution to the gradient
balancing problem.

We evaluate our proposed methods in the crossmodal retrieval task of Recipe1M (Sal-
vador et al. 2017), a dataset of cooking recipes and images, adopting the symmetric
formulation of our losses, which considers both image and text modalities as source
of queries.

3.4 Experimental setup

All of our experiments were conducted using PyTorch 3, with a reimplementation
of the experimental setup (i.e. preprocessing, architecture and evaluation procedures)
described by (Salvador et al. 2017).

Dataset (Salvador et al. 2017) introduced Recipe1M, a large dataset of one million
pairwise aligned image and text documents corresponding to cooking recipes with
matching pictures. The scale and the diversity of this dataset challenges tractable
deep learning strategies for this cross-modal retrieval task.

The raw Recipe1M dataset is large-scale, with about 1 million image and recipe
pairs. It is currently the largest one in this domain, including twice as many recipes as
(Kusmierczyk et al. 2016) and eight times as many images as (J. Chen and C.-W. Ngo
2016). Furthermore, the presence of semantic information makes it particularly suited
for multitask learning: around half of the pairs are associated with a class, among
1048 classes parsed from the recipe titles.

Evaluation procedures The models are evaluated on 10 unique subsets of 1,000
(1k setup) or 5 unique subsets of 10,000 (10k setup) randomly selected image-recipe
pairs, and the mean results are reported for the median retrieval rank (MedR), as
well as the recall percentage at top K (R@K), which corresponds to the percentage of
queries for which the match is ranked among the top K closest results.

For the final model selection, we evaluate the MedR on the validation set at the
end of each training epoch. We train each model for 80 epochs, keeping only the one
with the best MedR on validation.

3. http://pytorch.org
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Architecture To embed the images from the raw pixels to the retrieval space, we
adopt a pre-trained ResNet-50 model 4. As for the recipes, a first module embed the
list of ingredients with a bi-LSTM, following a pretrained embedding matrix built
with word2vec (Mikolov et al. 2013). A second module embeds the list of cooking
instructions with a hierarchical LSTM. The first LSTM (word-level) is pretrained
using the skip-thoughts technique (Kiros, Zhu, et al. 2015) and is not fine tuned. The
second LSTM (sentence-level) is learned from scratch. A third module produces the
recipe features T by merging both textual modalities with a concatenation. Finally,
after mapping either the visual or the textual modality into the joint feature space
F , a hyperbolic tangent function is applied to the resulting representation, which is
then L2 normalized. This normalization ensures that the squared Euclidean distance
is proportional to the cosine distance.

Training scheme As adopted by (Salvador et al. 2017), we use the Adam (Kingma
et al. 2015) optimizer with a learning rate of 0.0001. Besides, we propose a simpler
training scheme: At the beginning of the training phase, we freeze the ResNet-
50 weights, optimizing only the text-processing branch, as well as the weights of
the mapping of the visual processing branch. After 20 epochs, the weights of the
ResNet-50 are unfrozen and the whole architecture is fine-tuned for 60 more epochs.

Triplet sampling As is common with triplet based losses in deep learning, we adopt
a per-batch sampling strategy for estimating Lins and Lsem (see Subsection 3.3.3). For
the instance-based losses, our mini-batch is balanced and composed of 100 crossmodal
(image-recipe) matching pairs. We define the positive instance set PB

q,v of each item q

by selecting its matching crossmodal sample, and the negative instance set NB
q,v with

the rest of the crossmodal samples.

Half of the pairs in each mini-batch B are randomly sampled from the classless
set, while the other half is sampled from the set with known classes. For any pair
(xq, xp) inside the mini-batch, where c(xq) = c(xp), we make sure there is at least one
other pair (x′q, x′p) associated with the same class, i.e., c(xq) = c(x′q) = c(xp) = c(x′p).
This is a necessary condition for the creation of the per-batch semantic ensembles of
positive matches PB

q,s.

For each item q we then randomly select a single crossmodal sample that belongs
to the same class, but not to the same instance, ensuring |PB

q,s| = 1 and PB
q,s 6= PB

q,v.
Finally, in order to guarantee the same number of negative samples for each query q,
we randomly select n negative items for each q, with n being the size of the smallest
negative ensemble inside the batch.

4. We also evaluated ResNet-152, but the results were comparable in spit of being slower to
train.
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3.4.1 State-of-the-art comparison

MedR R@1 R@5 R@10

1k
se
tu
p

Image to Textual recipe
CCA (Salvador et al. 2017) 15.7 14.0 32.0 43.0
PWC (Salvador et al. 2017) 5.2 24.0 51.0 65.0

PWC++ 3.3± 0.4 25.8± 1.6 54.5± 1.3 67.1± 1.4

AdaMine 1.0± 0.1 39.8± 1.8 69.0± 1.8 77.4± 1.1

Textual recipe to Image
CCA (Salvador et al. 2017) 24.8 9.0 24.0 35.0
PWC (Salvador et al. 2017) 5.1 25.0 52.0 65.0

PWC++ 3.5± 0.5 24.8± 1.1 55.0± 1.8 67.1± 1.2

AdaMine 1.0± 0.1 40.2± 1.6 68.1± 1.2 78.7± 1.3

10
k
se
tu
p

Image to Textual recipe
PWC (Salvador et al. 2017) 41.9 - - -

PWC++ 34.6± 1.0 7.6± 0.2 19.8± 0.1 30.3± 0.4

AdaMine 13.2± 0.4 14.9± 0.3 35.3± 0.2 45.2± 0.2

Textual recipe to Image
PWC (Salvador et al. 2017) 39.2 - - -

PWC++ 35.0± 0.9 6.8± 0.2 21.5± 0.2 28.8± 0.3

AdaMine 12.2± 0.4 14.8± 0.3 34.6± 0.3 46.1± 0.3

Table 3.1 – Comparison of AdaMine and the SOTA. MedR means Median Rank
(lower is better). R@K means Recall at K (between 0% and 100%, higher
is better). The mean and std values over 10 (resp. 5) bags of 1k (resp.
10k) pairs each are reported for the top (resp. bottom) table.

We provide a quantitative evaluation of our proposed methods, compared to different
baseline models, in Table 3.1. CCA denotes the Canonical Correlation Analysis
method applied to the same pretrained embeddings that we use for all the reported
methods. PWC denotes the pairwise loss with the classification layer from (Salvador
et al. 2017). We report their state-of-the-art results for the 1k and 10k setups when
available. PWC++ denotes the improved version of PWC, which uses the positive
margin (set to 0.3) as well as the negative margin (set to 0.9). Finally, AdaMine is
a combination of the adaptive bidirectional instance and semantic triplet losses. Its
margin is set to 0.3, and the weight λ for the semantic crossmodal triplets (T VVs
and VT Ts) is set to 0.3.
First, we observe that adding a positive margin to the pairwise approach PWC

results in an important improvement over the baseline model. This strategy allowed
PWC++ to achieve median ranks (medR) of 3.3 and 3.5 for the 1k setup, representing
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gains of 1.9 and 1.6 points over the results reported by (Salvador et al. 2017): 5.2 and
5.1. Similarly prominent gains were obtained for the 10k setup, of 7.3 and 4.2 points.
Without the positive margin in PWC, all the matching pairs of image and recipe
are forced to be mapped to the same point in the feature space F . This behavior can
lead to overfitting and sub-optimal solutions. By adding a positive margin we relax
this constraint, obtaining a better solution.
Our triplet-based approach (AdaMine), however, surpasses the current state-of-

the-art results by a large margin. For the 1k setup, it reduces the medR score by
a factor of 5—from 5.2 and 5.1 to 1.0 and 1.0—, and by a factor bigger than 3 for
the 10k setup. Moreover, it has fewer parameters than PWC++ and PWC, since
the feature space is directly optimized with a semantic loss, without the addition a
parameter-heavy head to the model.
Choosing triplet over pairwise losses leads to better results. This is explained by

the triplet’s ability to better model the ranking constraints into the representation
space, as discussed in Subsection 3.2.2. Contrarily to pairwise, it is able to apply a
flexible margin, that takes into account the anchor’s distance to both positive and
negative samples, instead of a hard margin, directly applied to these distances.

Due to the combination of an instance-based cost and a semantic-based one, we are
able to enrich the retrieval space without adding costly modules to the architecture.
Furthermore, our adaptive mining strategy combines the benefits of the average
and the maximum ones, described in Subsection 3.3.3, while also dealing with their
shortcomings. The combination of these proposals allowed AdaMine to obtain the
best score for all evaluated metrics.

With the intention of better understanding the individual influence of each contri-
bution we presented, we develop, in the following section, extra experiments that test
them.

3.4.2 Further analyses

In Table 3.2, we conduct deeper analyses of our model, as to highlight the contribu-
tion of each of our proposals to the final results. In order to better show the nuances
between different approaches, all experiments in this section are conducted with the
10k setup. To simplify the discussion, we consider the MedR in the im2recipe task
for our analyses, but our arguments stand for the other evaluation metrics as well
(reported in the Table 3.2).

Adaptive sampling validation We start by comparing our adaptive sampling
strategy (adm) with the average one (avg), adopted by (Karpathy et al. 2015; Kiros,
Zhu, et al. 2015). First, we disconsider the influence of the semantic loss, by taking
the lines (3)-avg and (4)-adm. The (3)-avg achieves 16.2 MedR, while the adaptive
scheme (4)-adm obtains an improvement of 0.8 over it, with the score of 15.4. The
same experiments, this time considering the semantic loss, are the (6)-avg and the
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Image to Textual recipe
Retrieval loss Semantic loss Sampling MedR R@1 R@5 R@10

(1) Random - - 5000 0.0 0.1 0.1
(2) - Lbitri adm 207.3 1.4 5.7 9.6
(3) Lbitri - avg 16.2 12.6 30.9 41.4
(4) Lbitri - adm 15.4 13.3 32.1 42.6
(5) Lbitri Classification adm 14.8 13.6 32.7 43.2
(6) Lbitri Lbitri avg 14.2 14.1 33.3 43.9
(7) Lbitri Lbitri adm 13.2 14.9 35.3 45.2

Textual recipe to Image
Retrieval loss Semantic loss Sampling MedR R@1 R@5 R@10

(1) Random - - 5000 0.0 0.1 0.1
(2) - Lbitri adm 205.4 1.4 5.4 9.1
(3) Lbitri - avg 17.2 11.7 29.8 40.4
(4) Lbitri - adm 15.8 12.3 31.1 41.7
(5) Lbitri Classification adm 15.2 12.9 31.8 42.5
(6) Lbitri Lbitri avg 14.4 13.3 32.5 43.5
(7) Lbitri Lbitri adm 12.2 14.8 34.6 46.1

Table 3.2 – Extra analyses of the AdaMine components. MedR means Median
Rank (lower is better). R@K means Recall at K (between 0% and 100%,
higher is better). The mean value over 5 bags of 10,000 pairs each is
reported.

(7)-adm. They display the same behavior: (6)-avg achieves 14.2 MedR, and (7)-adm
13.2. In this scenario, the gain is of 1.0. It is worth mentioning that we also tried the
maximum sampling strategy (Faghri et al. 2017), but it was very unstable and did
not succeeded in converging on this large-scale dataset. These experiments validate
the efficiency of adm as the negative sampling procedure, therefore we will adopt it
for the next analyses.

Semantic loss impact We then quantify how decisive is the use of the semantic
information in our learning process. Starting from the random model (line 1), which
achieves 5000 of MedR, we show that the semantic loss alone (line 2) achieves far
better results: 207.3. This experiment highlights the capacity of the semantic loss to
organize the feature space without using the instance information. Next, we point
that the instance-based triplet model with additional semantic information (line 5)
reaches better results than the one without it—respectively, 14.8 and 15.4 of MedR,
a gain of 0.6 points. Furthermore, we show that our semantic loss, proposed in
Subsection 3.3.2 (line 7), outperforms the method proposed in (Salvador et al. 2017)
(line 5), which adds a classification head C to the model. (5) achieves 14.8 MedR,
and (7) 13.2, a difference of 1.6 points. These experiments confirm the importance of
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Figure 3.4 – Scores for different values of the λ hyper-parameter, responsible for
weighting the semantic regularization cost Lsem of AdaMine, calculated
over 5 bags of 10.000 validation samples. The α hyper-parameter is
arbitrarily fixed to 0.2.

additional semantic clues: despite having one million less parameters, our approach
achieves better scores, when compared to the addition of the classification head.
Finally, we conduct an analysis of the hyperparameters of AdaMine. Figure 3.4

illustrates the impact of λ, responsible for weighting the semantic regularization cost
Lsem. Although we observe a fair level of robustness for lower values of λ, any value
over 0.5 has a hindering effect on the retrieval task, since the semantic grouping
starts to be of considerable importance. We also performed a similar test with the
margin α, presented in Figure 3.5, where we observe the method works well for any
sensibly-chosen low value of α.

α
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Figure 3.5 – Scores for different values of the α hyper-parameter, which de-
fines the triplet margin for AdaMine, calculated over 5 bags of 10.000
validation samples. The λ hyper-parameter is arbitrarily fixed to 0.1.

Ablation studies In Table 3.3 and Table 3.4, we also consider several scenarios
where we only use parts of our model. The suffix _sem indicates the semantic loss
alone, while _ins indicates the instance-wise loss alone, _ins+cls the instance-wise
loss with the classification branch proposed by (Salvador et al. 2017), _avg our
model with the average triplet sampling (Equation 3.13), and _ingr and _instr the
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Image to Textual recipe
MedR R@1 R@5 R@10

SO
T
A

Random 499 0.0 0.0 0.0
CCA [1] 15.7 14.0 32.0 43.0
PWC [1] 5.2 24.0 51.0 65.0
PWC [1]* 5.0± 0.4 22.8± 1.4 47.7± 1.4 60.1± 1.4

PWC++ 3.3± 0.4 25.8± 1.6 54.5± 1.3 67.1± 1.4

M
od

el
sc
en
ar
io
s AdaMine_sem 21.1± 2.0 8.7± 0.7 25.5± 0.9 36.5± 0.9

AdaMine_ins 1.5± 0.5 37.5± 1.1 67.0± 1.3 76.8± 1.5

AdaMine_ins+cls 1.1± 0.3 38.3± 1.6 67.5± 1.2 78.0± 0.9

AdaMine_avg 2.3± 0.5 30.6± 1.1 60.3± 1.2 71.4± 1.3

AdaMine_ingr 4.9± 0.5 22.6± 1.4 48.5± 1.6 59.8± 1.3

AdaMine_instr 3.9± 0.5 24.4± 1.6 52.6± 2.0 65.4± 1.6

AdaMine 1.0± 0.1 39.8± 1.8 69.0± 1.8 77.4± 1.1

Textual recipe to Image
MedR R@1 R@5 R@10

SO
T
A

Random 499 0.0 0.0 0.0
CCA [1] 24.8 9.0 24.0 35.0
PWC [1] 5.1 25.0 52.0 65.0
PWC [1]* 5.3± 0.4 21.2± 1.2 48.0± 1.1 60.4± 1.4

PWC++ 3.5± 0.5 24.8± 1.1 55.0± 1.8 67.1± 1.2

M
od

el
sc
en
ar
io
s AdaMine_sem 21.1± 1.9 8.2± 0.9 25.5± 1.0 36.2± 0.9

AdaMine_ins 1.6± 0.5 36.1± 1.6 66.6± 1.3 76.8± 1.5

AdaMine_ins+cls 1.2± 0.4 37.5± 1.4 67.7± 1.2 77.3± 1.0

AdaMine_avg 2.2± 0.3 30.6± 1.8 60.6± 1.1 71.9± 1.1

AdaMine_ingr 5.0± 0.6 21.5± 1.4 47.7± 2.1 59.8± 1.8

AdaMine_instr 3.7± 0.5 23.6± 1.7 52.7± 1.6 65.5± 1.5

AdaMine 1.0± 0.1 40.2± 1.6 68.1± 1.2 78.7± 1.3

Table 3.3 – Detailed comparison of AdaMine components on 1k samples.
MedR means Median Rank (lower is better). R@K means Recall at
K (between 0% and 100%, higher is better). The mean and std values
over 10 bags of 1,000 pairs each are reported. Items marked with a star (*)
are our reimplementation of the cited methods. [1] results from (Salvador
et al. 2017).
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Image to Textual recipe
MedR R@1 R@5 R@10

PWC++ (best SOTA) 34.6± 1.0 7.6± 0.2 19.8± 0.1 30.3± 0.4

M
od

el
sc
en
ar
io
s AdaMine_sem 207.3± 3.9 1.4± 0.3 5.7± 0.3 9.6± 0.3

AdaMine_ins 15.4± 0.5 13.3± 0.2 32.1± 0.7 42.6± 0.8

AdaMine_ins+cls 14.8± 0.4 13.6± 0.2 32.7± 0.4 43.2± 0.3

AdaMine_avg 24.6± 0.8 10.0± 0.2 25.9± 0.4 35.7± 0.5

AdaMine_ingr 52.8± 1.2 6.5± 0.2 17.9± 0.2 25.8± 0.3

AdaMine_instr 39.0± 0.9 6.4± 0.1 18.9± 0.4 27.6± 0.5

AdaMine 13.2± 0.4 14.9± 0.3 35.3± 0.2 45.2± 0.2

Textual recipe to Image
MedR R@1 R@5 R@10

PWC++ (best SOTA) 35.0± 0.9 6.8± 0.2 21.5± 0.2 28.8± 0.3

M
od

el
sc
en
ar
io
s AdaMine_sem 205.4± 3.2 1.4± 0.1 5.4± 0.2 9.1± 0.4

AdaMine_ins 15.8± 0.7 12.3± 0.3 31.1± 0.5 41.7± 0.6

AdaMine_ins+cls 15.2± 0.4 12.9± 0.3 31.8± 0.3 42.5± 0.2

AdaMine_avg 24.0± 0.6 9.2± 0.4 25.4± 0.5 35.3± 0.4

AdaMine_ingr 53.8± 0.7 5.8± 0.3 17.3± 0.2 25.0± 0.2

AdaMine_instr 39.2± 0.7 5.7± 0.4 17.9± 0.6 26.6± 0.5

AdaMine 12.2± 0.4 14.8± 0.3 34.6± 0.3 46.1± 0.3

Table 3.4 – Detailed comparison of AdaMine components on 10k samples.
MedR means Median Rank (lower is better). R@K means Recall at K
(between 0% and 100%, higher is better). The mean and std values over
5 bags of 10,000 pairs each are reported. Items marked with a star (*)
are our reimplementation of the cited methods. [1] results from (Salvador
et al. 2017).

ingredient and the instruction branches alone. For this experiment, the max strategy
(Equation 3.14) did not converge in any of the multiple runs.

We show that our approach is able to achieve results close to the State-Of-The-
Art (SOTA) even with missing information, e.g. knowing the ingredients but not the
instructions, and that replacing the average strategy by our adaptive one greatly
improves the results, since the two losses we adopted can be correctly balanced during
the training phase. We also highlight that the semantic loss is more efficient, since it
achieves lower retrieval scores when compared to adding the classifier branch.
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3.5 Conclusion

In this chapter, we performed the alignment of cross-modal feature spaces, tackling
the retrieval task.

Our motivations came from the very roots of the retrieval’s task, and its quest for
answering the question of how to correctly organize feature spaces?
A number of options for performing this kind of alignment were proposed on the

scientific literature, and some of them were discussed in this work. However, each of
them also comes with shortcomings, either in the form of increasing the number of
parameters of the model, or increasing the computational cost of learning.
We presented a new multi-task loss, which exploits both instance-based and

semantic-based training information in a single learning framework. Our main
contribution is a simple to implement and scalable regularization scheme, which
incorporates semantic information via an auxiliary task using the metric learning
framework. The strategy we call AdaMine, for adaptively-mined triplet loss, samples
triplet constraints from the classification labels, and these constraints are added
as a regularization term to our objective function that deals with the cross-modal
alignment.

A second contribution is the exploration of solutions for selecting informative triplets
in our large scale optimization context and, in particular, an adaptive strategy for
negative mining, which provides more stable and faster convergence when compared to
other approaches. AdaMine is evaluated on the very large and challenging Recipe1M
cross-modal dataset, outperforming the state-of-the-art models. As noticed in (Faghri
et al. 2017), the classical gradient averaging over the mini-batches examples used
in deep nets struggles to learn precise embeddings. However, (Faghri et al. 2017)
also noticed that their hard negative mining strategy suffers from a slow start, a
phenomenon amplified by our large scale context. To overcome both difficulties,
we introduced an adaptive strategy that efficiently tunes the gradient update by
weighting all the (hard) negative constraints.

Finally, AdaMine achieved large improvements over the classical approaches one
adopted by (Kiros, Salakhutdinov, et al. 2015; Faghri et al. 2017), proving itself as a
useful addition for when several triplets are simultaneously optimized. We also show
how the triplet approaches are superior to the pairwise approaches adopted in the
literature, and compare two methods to incorporate semantic information. We present
many experiments on a large multi-modal dataset, and our strategy outperforms the
state-of-the-art by a large margin.

As a side note, to prove the flexibility of AdaMine, it was hot-tested on the Google
Landmark Retrieval Challenge 5, and obtained a silver medal. It is important to
notice, however, that no validation nor tuning of hyper-parameters was performed.
The model was trained, and then submitted in the last hour of the competition,

5. https://www.kaggle.com/c/landmark-retrieval-challenge
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without searching for values for α, λ, nor choosing the number of training epochs.
With more time and proper validation, we believe AdaMine could have ranked even
better.
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Chapter abstract

Recent advances in the machine learning community allowed a wide range of
new applications to emerge. Its association to domains like cooking created the
computational cuisine, smart cooking, and other related fields. We build on
the work presented in Chapter 3, adopting the large-scale retrieval task of the
Recipe1M dataset, composed of one million image-recipe pairs and additional
class information, in which the goal is to find recipes based on picture or pictures
based on recipes. We conduct an in-depth exploration of the representation space
constructed by AdaMine, showing that subtasks never seen by the network can be
performed thanks to the semantic structure imposed by our double loss scheme.
Our results indicate that our method is able to structure the representation space
in a way that it is possible to discriminate between specific ingredients inside the
recipes or their visual content. Particularly to the food domain, the findings of
this chapter reveal the potential of applications concerning dietary restrictions
and menu planning.

Part of the work in this chapter led to the publication of a conference paper:
— Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, and Matthieu

Cord (2018). “Images & Recipes: Retrieval in the cooking context”. In: IEEE
International Conference on Data Engineering (ICDE), Data Engineering meets
Intelligent Food and Cooking Recipe (DECOR) workshop

61
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4.1 Introduction

Cooking is one of the most fundamental human activities connected to various
aspects of human life such as food, health, dietary, culinary art, and so on. Data mining
and machine learning techniques have been used to extract and clean large datasets
of recipes from the Internet, and also to plan and analyze the recipe instructions.

Consequently, smart cooking has recently become the center of increased interest as
shown by the development of related workshops such as the Workshop on Multimedia
for Cooking and Eating Activities (CEA 2017).
One difficulty underlying computational cooking lies in the nature of the data,

since recipes generally include images and text, structured or not (e.g., the list of
ingredients or instructions in natural language). This opens several challenges in
terms of indexing/storing and gives rise to numerous application tasks, such as
recommendation or classification. Computational cooking has consequently emerged
as a new research topic that also benefits from recent advances in machine learning
based on deep neural approaches.

Recent strategies aim at projecting data elements into a latent semantic space in a
way that similar elements are represented with similar low-dimensional features (Harris
1954; Mikolov et al. 2013). Beyond solving indexing issues, these latent representations,
also called embeddings, allow machines to perceive texts and images in a meaningful
way, similar to that of humans. This perception can be exploited in smart cooking-
oriented tasks, such as ingredient identification (J. Chen and C.-w. Ngo 2016), recipe
recognition (X. Wang et al. 2015), or recipe popularity prediction (Sanjo et al. 2017).

The increasing importance of food-related tasks in computer vision has motivated
the creation of many datasets. M. Chen et al. 2009, for example, proposed the
Pittsburgh fast-food image dataset, Kawano et al. 2014 release a dataset containing
mainly-Japanese food categories, and Farinella et al. 2015 another one containing
distinct plates. However, these datasets are small in size, containing hundreds to a
few thousands images.
In order to solve complex tasks like these ones in a reliable manner, richer sets

of images were required. Other initiatives provided larger datasets, with more
diversity and a bigger number of samples, which were fundamental for the usage of
deep networks. For example, Bossard et al. 2014 proposed the Food-101 dataset,
containing around 101,000 images of 101 different categories. In the same spirit,
X. Wang et al. 2015 introduced a twin dataset, containing the same categories, but
with recipes associated to each picture. Finally, the dataset proposed by J. Chen and
C.-w. Ngo 2016 is similar in the number of images, while also including relations to
353 ingredients and 65 thousand recipes. Other ideas, like the one of Beijbom et al.
2015, involve taking advantage of the GPS data, used to retrieve nearby restaurants
and to match a picture taken by the user to items from the menu, this allowed
important information, like nutritional values, to be recovered.



4.2 apparatus 63

However, a large-scale dataset containing images and recipes was not available
until very recently, when Salvador et al. 2017 published Recipe1M. They collected
nearly 1 million recipes, with about 800,000 images associated to them. To the best
of our knowledge, up to date this is the biggest dataset of its kind, and it is adopted
in our experimental apparatus on this chapter.
In Chapter 3, we presented AdaMine, a new learning strategy developed for an

architecture with two deep neural networks. It was initially designed for the cross-
modal retrieval problem, with a particular application to the computational cooking,
as it was trained on the Recipe1M dataset.

After training the multi-modal architecture with our learning strategy, we are now
interested in smart cooking, the retrieval task between recipe modalities (namely
recipe texts and dish pictures), and in experimenting with AdaMine in this setup to
better understand the representations refined by it. Therefore, we propose a broader
study of the model we previously trained. We will analyze the base task, retrieving
relevant pictures of a meal given its recipe or, conversely, a relevant recipe given
an image query, as well as different usages of our framework, querying for specific
ingredients and removing ingredients from a recipe.
This chapter is organized as follows:

— In Section 4.2 we present our test apparatus, discussing our experimental goals,
with special focus on extra tasks like ingredient retrieval and ingredient exclusion;

— We then conduct in Section 4.3 an exploration of the representations created
by our model, showing applications and properties, like the semantic-wise and
instance-wise neighborhood relations;

— Finally, in Section 4.4 we discuss the experimental results we obtained, highlighting
the potential of our model for solving traditional and promising computational
cooking use-cases. We analyze several downstream tasks to exploit the proposed
model (in terms of learned architecture and/or representations) and qualitatively
demonstrate its effectiveness.

4.2 Apparatus

The global architecture adpted in our experiments is depicted in Table 4.1, as
well as few excerpts from the dataset. This model is the same model we trained in
Chapter 3, with the same learning scheme. It consists of two deep neural network
branches that respectively map each modality (image or text recipe) into a common
representation semantic space in which they can be compared. This architecture is
further detailed in Section 3.3.

Recipe1M is designed to tackle the problem of cross-modal retrieval, in which the
user wants to retrieve images of a dish by providing its recipe or, conversely, retrieving
a recipe by providing a picture of the meal. These tasks are represented in Figure 4.2
and Figure 4.1, respectively. The presence of high level semantic information in the
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dataset, such as food classes, allows us to enforce a semantic structure on the learned
representations (i.e., items from the same class to have similar representations).

Figure 4.1 – Recipe1M’s task of textual recipe retrieval from image. Given
an image, the goal is to find the recipe that corresponds to that specific
image. This recipe not only belongs to the same class of the image, but
it also corresponds to the same instance (Adapted from Salvador et al.
2017).

We use the model we trained with AdaMine in our experiments, and we are
interested in understanding how points inside these spaces change when the initial
data changes. In other words, we want to visualize the impacts of changes in the
input inside the representation space, to check if it sensible to small deformations,
even if they were not explicitly taught to the model. For example, we would expect
to see similar recipes being retrieved if we made small changes to the recipe, since
the space should have clusters containing recipes of the same class, imposed by the
semantic loss. For this objective, we propose the tests:
— Visualize the feature space to check if it is correctly organized with the

semantic structure and the instance-based information imposed during the training
phase;

— Study the standard retrieval for the dataset, giving a recipe to the model and
verifying the images we retrieve. In particular, we want to know if they correspond
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ingr (ingredients) instr (cooking instructions) image

P
iz
za

1. pizza dough

2. hummus

3. arugula

4. cherry / grape toma-
toes

5. pitted greek olives

6. crumbled feta cheese

1. Cut the dough into two 8-ounce sized pieces.

2. Roll the ends under to create round balls.

3. Then using a well-floured rolling pin, roll the
dough out into 12-inch circles.

4. Place the dough circles on sheets of parchment
paper.

... ...

P
ec
an

P
ie

1. unsalted butter

2. eggs

3. condensed milk

4. sugar

5. vanilla extract

6. chopped pecans

7. chocolate chips

... ...

1. Preheat the oven to 375 degrees F.

2. In a large bowl, whisk together the melted
butter and eggs until combined.

3. Whisk in the sweetened condensed milk, sugar,
vanilla, pecans, chocolate chips, butterscotch
chips, and coconut.

... ...

Table 4.1 – Overview of our multi-modal retrieval system. The multi-modal
retrieval neural network is shown on the top, and examples of inputs
issued from the large-scale Recipe1M dataset on the bottom.
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Figure 4.2 – Recipe1M’s task of image retrieval from textual recipe. Given
a textual recipe, the goal is to find the image that corresponds to that
specific recipe. This image not only belongs to the same class of the
recipe, but it also corresponds to the same instance (Adapted from
Salvador et al. 2017).

to the same instance of the recipe (i.e. picture taken from that exact recipe), and
if they are semantically related to the query (same class of the recipe);

— Different modalities for retrieval can be used, checking if we are able to
retrieve any known modality with our network, no matter which one was used for
the query;

— Retrieve recipes with a specific ingredient, in order to see if we are able to
search for any recipe containing an ingredient, or even recipes inside a specific
class that contain the same recipe;

— Perform ingredient exclusion, to test if we are able to remove an ingredi-
ent from a recipe and retrieve alternative recipes from the same class, but not
containing the specified ingredient.
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4.3 Feature Space Exploration

In this section, we qualitatively evaluate the behavior of AdaMine, with the goal of
better understanding its learned embedding spaces.

Our model has a twofold objective (namely, cross-modal retrieval and multi-modal
representation) which could be beneficial for several cooking-related tasks. Its strength
relies on the fact that, on one hand, it is capable of performing retrieval tasks, and on
the other hand, the learned representation space allows to identify similar/dissimilar
text and visual items. We believe that similar systems may be beneficial for ambitious
tasks, such as menu or shopping list generation, or calorie tracking, since these tasks
require more insight in terms of model design, as they might include diversity factors,
ingredient quantity analysis, or external knowledge in a task-oriented model.

In this chapter, we focus particularly on downstream tasks for which these properties
can be exploited. We provide illustrative examples issued from the our model and,
for better readability, we always show the results as images, even for text recipes for
which we display their corresponding original picture.

Visualization We first want to roughly visualize the representation space issued
from the model trained with our technique, with particular focus on its organization
and quality of alignment. In other words, we want to see if matching image and
recipe items are close together. Additionally, we would like to observe the semantic
disposition of this space, verifying the ability of AdaMine to form clusters of items
belonging to the same recipe class.

To do so, we first select 5 classes among the most occurring ones in our dataset. We
then randomly sample 80 image-recipe pairs for each of the selected classes, and extract
their embeddings using our two networks, applying the t-SNE algorithm (Maaten
et al. 2008) to project the data points from their original space to a 2 dimensional
space.
In Figure 4.3 we show the differences between the feature spaces created by

AdaMine and by the instance-only triplet loss. The image is constructed using the
representations of the 400 pairs we randomly selected from the 5 classes mentioned
above. We observe that the manifold produced by our method displays better semantic
structure. This is due to our double loss, described in Subsection 3.3.2, capable of
taking advantage of class information in order to create neighborhood constraints.

4.3.1 The Retrieval Task

We continue our analysis by exploring the retrieval task. In the first part of this
exploration, we will explore the image retrieval from a recipe query, and in the second
part we will study the impacts of different modalities being used for the query and
the results.
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(a) Triplet (b) AdaMine

Figure 4.3 – t-SNE visualization of AdaMine’s and Triplet’s semantic
spaces. Image (resp. Recipe) points are denoted with the + (resp.
•) symbol. Matching pairs are connected with a trace. Blue points are
associated to the cupcake class, orange to hamburger, pink to green
beans, green to pork chops, and red to pizza.

Image Retrieval We start tackling the recipe-to-image retrieval task, whose goal
is to find the picture of a dish, given its recipe in textual form. In Table 4.2 and
Table 4.4, we compare AdaMine (top row) and the instance-based triplet (bottom
row) on four random recipe queries, for which both models are able to rank the
correct match in the top-5 among 10,000 candidates.

For recipes of cucumber salad and roasted chicken, in the first and second rows
of Table 4.2, respectively, both models are able to retrieve the matching picture in
the first position. However, by analyzing the ranking of the top-5 images, we see
that AdaMine is able to retrieve images that are semantically related to the query,
while the instance-based triplet lacks the ability to enforce a semantic structure
into the space, creating mixed neighborhoods. All of the top-5 results selected by
AdaMine share critical ingredients with the recipes: cucumber and chicken; while the
instance-based seems to focus on the yogurt and on the potatoes.

As for the first and second rows of Table 4.4, for pizza and chocolate chip, respec-
tively, AdaMine is able to rank both the matching image and semantically connected
samples in a more coherent way. The pictures corresponding to the recipe are ranked
first in both cases, and the rest of the top-5 results belongs to the same class of the
query recipe. We believe this difference is due to a better alignment of the retrieval
space produced by the semantic modeling in our training procedure.
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Ingredients query Cooking instructions query
Yogurt, cucumber, salt,
garlic clove, fresh mint.

Stir yogurt until smooth. Add cucumber, salt, and garlic.
Garnish with mint. Normally eaten with pita bread.
Enjoy!
Top 5 retrieved images

A
da

M
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e

Tr
ip
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Ingredients query Cooking instructions query
Olive oil, balsamic vine-
gar, thyme, rosemary,
brown sugar, lemons,
chicken drumsticks with
bones and skin, garlic,
potatoes, parsley.

Whisk together oil, mustard, vinegar, and herbs. Season
to taste with a bit of salt and pepper and a large pinch
or two of brown sugar. Cut lemon in half, zest that half
and reserve; juice the same lemon half and add juice to
marinade. Place chicken in a non-metal dish and pour
marinade on top to coat. [...]
Top 5 retrieved images

A
da

M
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e
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t

Table 4.2 – Recipe-to-images visualization, part 1. For each recipe, we have
the top row, indicating the top 5 images retrieved by our AdaMine model
for a given recipe query, and the bottom row, indicating the top 5 images
by the triplet loss for the same recipe. In cyan, the matching image. In
blue, images belonging to the same class than the recipe. In red, images
belonging to a different class.
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Multi-modal Retrieval Following the Image Retrieval analysis, we would like to
expand it to fully take advantage of the multi-modal scenario. We explore in depth
the ability of our model to perform retrieval from any modality to any other modality,
therefore we are interested in four retrieval scenarios: image-to-text, text-to-image,
text-to-text, and image-to-image.
Specifically for the smart cooking tasks, this type application can be useful when

the one wants the recipe of a meal found in a restaurant, or to identify similar recipes
should they like to replace a meal in their menu by another one. In our framework,
solving this task sums up to retrieving similar items in the semantic space (i.e., the
ones with the smallest distances with respect to the query).

Ingredients Cooking instructions Image

C
ru
nc
hy

O
ni
on

P
ot
at
o
B
ak

e

Milk, Water,
Butter, Mashed
potatoes, Corn,
Cheddar cheese,
French-fried
onions

Preheat oven to 350 degrees Fahrenheit. Spray
pan with non stick cooking spray. Heat milk,
water and butter to boiling; stir in contents of
both pouches of potatoes; let stand one minute.
Stir in corn. Spoon half the potato mixture in
pan. Sprinkle half each of cheese and onions;
top with remaining potatoes. Sprinkle with
remaining cheese and onions. Bake 10 to 15
minutes until cheese is melted. Enjoy !

Table 4.3 – Query used in the multi-modal retrieval tasks.

To begin, we randomly chose a query item, shown in Table 4.3. The multi-modal
data from this dish (picture and recipe) will be used for testing our four scenarios.
Then, in Table 4.5 we present the results for this experiment, from which we draw
the following observations:
— image-to-image: for this first experiment, the query image is given to the CNN,

that converts it to a feature vector. We then search in the feature space for all
image feature vectors close to the one from the query. For obvious reasons, the
closest one is from the same image (with distance = 0), so we start our analysis
from the second up.

We can see that all the top 5 retrieved images look similar to the query image,
not only in term of colors, shapes, and textures, but also semantically. For instance,
the first, third and forth images have grated cheese on top, just like the query
image shown in Table 4.3.

Although the goal of this experiment is to analyze the image retrieval with an
image query, when we look at the corresponding recipes from the retrieved items,
we observe they are all baked, and they also include a similar set of ingredients,
with potatoes, milk, butter, cheese, and onion. Small variations in the ingredients
are observed, however. For example, the second image has rice instead of potatoes.
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Ingredients query Cooking instructions query
Pizza dough, hummus,
arugula, cherry or grape
tomatoes, pitted greek
olives, crumbled feta
cheese.

Cut the dough into two 8-ounce sized pieces. Roll the
ends under to create round balls. Then using a well-
floured rolling pin, roll the dough out into 12-inch circles.
Place the dough circles on sheets of parchment paper.
[...]
Top 5 retrieved images

A
da

M
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e

Tr
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Ingredients query Cooking instructions query
Unsalted butter, eggs,
condensed milk, sugar,
vanilla extract, chopped
pecans, chocolate chips,
[...]

Preheat the oven to 375 degrees F. In a large bowl,
whisk together the melted butter and eggs until combined.
Whisk in the sweetened condensed milk, sugar, vanilla,
pecans, chocolate chips, butterscotch chips, and coconut.
[...]
Top 5 retrieved images

A
da

M
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e
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Table 4.4 – Recipe-to-images visualization, part 2. For each recipe, we have
the top row, indicating the top 5 images retrieved by our AdaMine model
for a given recipe query, and the bottom row, indicating the top 5 images
by the triplet loss for the same recipe. In cyan, the matching image. In
blue, images belonging to the same class than the recipe. In red, images
belonging to a different class.
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Top 2 Top 3 Top 4 Top 5 Top 6
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Table 4.5 – Visualization of our modality-to-modality retrieval tests. We
show the 5 retrieved recipes (the image associated to recipe is displayed)
for the multi-modal retrieval tasks.

— image-to-recipe: next, the query image is given to the CNN, that converts it again
to a feature vector. We then search in the feature space for all recipe feature
vectors close to the one from the query. These vectors are extracted using the
recipe network, shown in the top-left side of Table 4.1.

From the 5 top retrieved results, 3 are shared with the image-to-image search.
This is a strong indicator that the embeddings of matching image-recipe pairs are
correctly aligned. However, we also obtain results that are less visually similar,
but closer in the recipe domain, either in terms of ingredients or in cooking
instructions.

— recipe-to-image: in the following, the query recipe is given to the recipe network,
that converts it to a feature vector. We then search in the feature space for all
image feature vectors close to the one from the query.

For this case, we also find images of recipes that are similar to the query. Most
of them share the same common ingredients as in the image-to-image case. We
also remark that the images retrieved are visually similar to the picture associated
with the query recipe, although no visual information was used for the search.

— recipe-to-recipe: for the last of the four experiments, the query recipe is again
given to the recipe network, that converts it to a feature vector. We then search
in the feature space for all recipe feature vectors close to the one from the query.

In Table 4.5, the images are shown merely to provide a visual representation of
the recipes, since the query and all the retrieved items are in textual form. Each
image we show corresponds to the picture of the recipe retrieved by our model.
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Although the recipes also share common ingredients with the query, we observe
a richer visual diversity. This is due to the fact the whole search is based upon
textual information, and although our model is capable of correctly aligning
pictures and recipes, there is still difference between their representations due to
the different nature of information contained in each one of them.

4.3.2 Operations with Ingredients

An interesting ability of our model is to map ingredients into the semantic space
in order to retrieve recipes containing the same ingredients. This is particularly
useful when one would like to know what they can cook using ingredients available
in their fridge. The same process should allow us to be able to remove ingredients
from recipes, finding alternatives for food allergies, for example. In the following, we
explore the potential of these approaches, showing that the semantic organization of
the feature space helps with ingredient alignment as well.

Ingredient To Image To demonstrate the first part of this exploration, we create
ingredient queries by averaging representation vectors of available ingredients. We
then retrieve the nearest neighbors of these queries among 10,000 images randomly
picked from the testing set.

C
ar
ro
t

M
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oo

m

Table 4.6 – Examples for ingredient retrieval. We show images in the top 20
when searching for the ingredient Carrot (top row) or Mushroom (bottom
row).

In Table 4.6, we showcase images within the top 20 nearest neighbors of the
ingredients carrot and mushroom. We are able to retrieve visually diverse meals
containing the query ingredient, even though the number of known ingredients taken
into account by the network is big.

Then we propose a second experiment: we first constrain the class of the query to
be pizza, and then we search for different ingredients inside this class. The results for
this experiment are shown in Table 4.7.

Searching for pineapple or olives results in different types of pizzas. An interesting
remark is that searching for strawberries inside the class pizza yields images of fruit
pizza containing strawberries, i.e., images that are visually similar to pizzas while
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Mushrooms Pineapple Olives Pepperoni Strawberries

Table 4.7 – Examples for ingredient retrieval inside the pizza class. We show
images in the top 20 results when searching for “mushroom”, “pineapple”,
“olive”, “pepperoni”, or “strawberry” within the Pizza class.

containing the required ingredient. This shows the fine-grained structure of the
semantic space where recipes and images are organized by their similarity inside
different class clusters at the same time.

Removing ingredients The capacity of finely model the presence or absence of
specific ingredients may be interesting for generating menus, specially for users with
dietary restrictions, for instance, peanut, lactose or gluten intolerance, as well as
vegetarian and vegan diets.

Query Top retrieved images

Tofu Sauté

Oregano, Zucchini, Tofu,
Bell pepper, Onions, Broc-
coli

Cut ingredients into small
pieces. Boil water [...]

w
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Table 4.8 – Retrieving recipes with or without broccoli in the ingredients.
We show the top 4 retrieved images with (top row) and without (bottom
row) broccoli in the ingredient and instruction lists for the query.

To do so, we randomly select a recipe having broccoli in its ingredients list (Table 4.8,
first column) and retrieve the top 4 closest images in the embedding space from 1000
recipe images (Table 4.8, top row). Then we remove the broccoli in the ingredient
list, as well as all of the instructions containing the broccoli word. Finally, we once
again perform the retrieval task to find the top 4 images associated to this "modified"
recipe (Table 4.8, bottom row).

For all of the retrieved images using the original recipe, the broccoli is both visually
and textually present, whereas none of the retrieved images using the modified recipe
do not contain broccoli. This reinforces our previous statement, highlighting the
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ability of our semantic space to correctly discriminate items with respect to ingredients,
even though this was never taught to the model.

4.4 Conclusion

In this chapter, we explored in-depth the representation space constructed by the
AdaMine model presented in Chapter 3. For this task, we adopted the large-scale
multi-modal dataset Recipe1M, composed of nearly one million image-recipe pairs
and additional class information.

Our apparatus, described in Section 4.2 is composed of two networks. The first one,
a Convolutional Neural Network (CNN), is responsible for the image processing, and
the second, composed mainly of Long Short-Term Memorys (LSTMs), processes the
textual input. The representation spaces of both networks are aligned using AdaMine,
that also introduces instance-based and semantic-based structure into them.

In Section 4.3 we show that this strategy is powerful enough to allow the network
to learn details down to the ingredient level of a recipe — something that was never
explicitly taught to the model. We were able to filter ingredients inside specific
classes, as well as to search for specific ingredients on the feature space, retrieving
recipes containing them. In one of our experiments, we demonstrate the ability of
our model of excluding ingredients from a recipe, and finding alternative recipes
not containing that ingredient. This case could be especially useful for applications
focused on dietary restrictions and food alternatives.
We have also shown the power of the multi-modal alignment. On Recipe1M, two

modalities are available: visual (pictures) and textual (recipes and ingredients). When
fully trained, our model was able to perform the cross-modal retrieval task from any
modality to any modality, achieving results that vouch for the correctness of the
alignment of the feature spaces.

The potential of our learning strategy is not limited to the domain we adopted, as
it has the potential to inject information into the representation space and enforce
structure to it, as long as there is extra information that can be modeled into a loss
function. We have shown that applications of this method for computational cooking
are evident, opening interesting perspectives for ambitious tasks as menu composition
or cooking with restricted ingredient availability.
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CONCLUSION

In this thesis, we discussed representation spaces created by Deep Artificial Neural
Networks (ANNs). We were particularly interested in the transfer of knowledge
between deep nets. In the transfer context, these spaces are usually created by
training a deep net on a large-scale dataset. Because of the richness in these datasets,
the representations created by the network can more easily generalize to other tasks.
We started by studying precision and redundancy properties inherent to these

spaces. These studies led us to the exploration of ways to compress the representations
extracted from deep nets and, in light of the excellent results we obtained, we also
studied compression schemes for the whole network.

On a second part of this manuscript, we focused on refining representation spaces
with a fine-tuning strategy. This led us to adopt metric learning strategies for
introducing information directly into multi-modal spaces. The method we proposed,
AdaMine, achieves a 5-fold improvement over the state-of-the-art for the Recipe1M
dataset.
We then provided a deeper analysis of the representation created by our model,

showing how our method was able to semantically organize information inside the
representation space, opening the way for many multi-task applications in the real
world.

In the following, we highlight our contributions, as well as future work emerging
from this work.

5.1 Main contributions

Study of deep representation spaces and compression schemes
First, we focused on exploring feature spaces in the context of transfer learning for

the image classification task. We have shown that deep architectures have interesting
properties of redundancy across dimensions, as well as unnecessary high precision in
their representations. We have proposed in Chapter 2 an experimental protocol we
call stress framework for evaluating these properties.

Our exploratory studies evaluated two strategies for reducing their dimensionality:
(1) randomly and (2) PCA-based; as well as three strategies for quantizing their
features: (1) erasing part of their binary representation, (2) using a global dictionary-
based approximation, and (3) using a feature-wise dictionary-based approximation.

77
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We also evaluated the impacts of these strategies when performed on different depths
of the network, corroborating existing observations by the scientific community that
the up-to-last layer is generally the best for transfer learning approaches.

This exploration revealed that deep representation spaces learned on the ImageNet
classification tasks have excessive richness, and can therefore be compressed. Our
feature compression experiment was able to reduce the representations we tested
by 98.4% while keeping 99.1% of their original score on the classification task of
the PASCAL Visual Object Classes (PASCAL VOC) 2007. This simple scheme serves
as showcase, and the adoption of better dimensionality reduction or quantization
methods have the potential to improve even further these results.

Next, we presented ways of reducing the number of parameters of Artificial Neural
Networks (ANNs) while also copying their feature spaces. One of our toy experiments
served to show that Convolutional Neural Networks (CNNs) can be compressed in a
teacher-student setup. We were able to create a student architecture with roughly
6.8% of the number of parameters in a teacher network, while keeping 95.6% of its
score. Then, a proposal of a family of relaxed regression losses for mimic learning
was made. These losses are inspired by the results we obtained with our exploration
of feature spaces. A simple experiment showed their potential, and further tuning of
parameters could improve their performance, especially for transfer tasks.

Multi-modal alignment strategy AdaMine
Following, we refined feature spaces in Chapter 3. We tackle a multi-modal retrieval

task, for which the goal is to find images based on textual descriptions, or texts based
on images. We adopt a Convolutional Neural Network (CNN) for the image part, and
Long Short-Term Memorys (LSTMs) for the textual part. The CNN is pre-trained
on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) classification
task, and most of the Long Short-Term Memorys (LSTMs) are trained from scratch.
However, we remove the classification layer for these networks, and our learning
scheme directly acts upon their representation space.
Our proposal, AdaMine, is composed of two multi-modal and multi-task triplet

losses: (1) instance-based and (2) semantic-based; as well as an adaptive sampling
strategy capable of providing stability to the weighting of these two losses. AdaMine
follows a different path than the one usually followed by classic multi-task approaches:
instead of adding heads specialized to each task to the model, it directly enforces the
task into the feature space through task-specific losses.
We tested our method in a cross-modal retrieval task, showing its effectiveness

when compared to state-of-the-art approaches in both of the tested tasks: retrieval
of image based on text and retrieval of text based on image. We then performed
extensive ablation studies to analyze the contribution of each component of AdaMine,
concluding that incorporating semantic information into the representation space
has a positive impact on the scores, but when combined with our adaptive sampling
strategy, the benefits are even more promising.
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Multi-task properties of semantic latent spaces
Finally, we showed that feature spaces constructed with AdaMine can learn semantic

subtasks never seen during training (Chapter 4). We focus on cooking-related
activities, and in particular recipe retrieval from dish pictures, and dish picture
retrieval from recipes. This kind of task has recently emerged as a cross between
Machine Learning (ML) and smart cooking, and previous research verified its difficulty,
as well as potential solutions 1.
We achieved a 5-fold improvement over the state-of-the-art for the Recipe1M

dataset, composed of nearly 1 million image-recipe pairs. Then, we proceeded to
explore the representation space refined with AdaMine. A first remark is that the
semantic information is well encoded into these spaces, that are correctly organized
in clusters of different classes.

In the sequence, we explored different ways of performing the retrieval task in this
multi-modal space, not only performing recipe-to-image and image-to-recipe, but
also image-to-image and recipe-to-recipe. This experiment gave us clues that the
representations found inside these spaces can discriminate between specific ingredients,
and not only general classes.

With this finding, we went on to test if we were able to expand the initial task the
model was trained for: instead of querying with images or recipes, we chose to search
for a single ingredient, and found out that we were able to retrieve recipes containing
it. We were also able to search for specific ingredients inside a chosen class (pineapple
in pizzas, for example).

Finally, we tested if our model was able to exclude ingredients from a recipe. This
kind of scenario is particularly useful for menu composition, finding alternatives to
allergens, and many other real-world applications. We were able to remove ingredients
from recipes, showing that alternative recipes without it were retrieved.

5.2 Future directions

More compression strategies
Now that we have demonstrated that deep features can be redundant, more

advanced dimensionality reduction and quantization strategies could be tested to find
compression schemes that have the potential to be even more powerful. Important
clues were found for signature optimization, in particular for embedded systems or in
the context of mobile classification / retrieval.

Study of the relaxed regression losses
With the preliminary results obtained in Chapter 2, many questions related to

mimic learning remain open. A broader study of the relaxed retrieval losses we

1. see http://visiir.lip6.fr/ for a demonstration
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proposed could be conducted under the transfer perspective, as our findings indicate
that smaller tasks benefit the most from the compressibility of deep features.

Extended versions of AdaMine
The principles behind AdaMine’s strategy can be generalized to other datasets

and tasks. Although there are not many of them containing instance-based and
semantic-based information, the adaptive mining strategy remains valid for any task,
and replacing multiple heads by a multi-task loss can create powerful models for
different applications. In our case, the retrieval task and the classification task were
combined, but as long as we can model a task as a loss function, it can be injected
directly into the feature space.
On a long-term basis, more ways of enforcing particular structures into deep

representation spaces can be studied. In particular, it would be interesting to test
the applicability of these methods for data generation, fraud detection, and more
generalized forms of descriptors.

These extensions can be particularly useful in the cooking context, improving the
retrieval performance for subtasks like the ingredient exclusion or inclusion, as well as
the basic retrieval for simple ingredients. For example, the neighborhood constraints
we have studied and exploited for creating AdaMine could be extended to incorporate
more information into the representation space, as the ingredients of the recipe and
different tastes — sweetness, sourness, saltiness, bitterness, and savoriness.
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