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Context

Deep CNN’s outstanding performance on vi-
sual tasks. Transfer takes advantage of it

A pretrained classifier (A) can be seen as a
feature extractor, used by (B) for classifying

a different task.

Questions
• Adequate representation space?
• Possible to compress?

Experimental Protocol

Main apparatus
• VGG-M from [1];
• Pascal VOC 2007;
• Linear SVM.

Supplementary experiments
• BossaNova from [2];
• GoogLeNet from [3];
• (paper-only) MIT-67 Indoor;
• (paper-only) UPMC Food-101.

Original Scores
VGG-M GoogLeNet BossaNova

VOC2007 76.95% 80.58% 51.02%

Dims. 4× 103 5× 104 6× 104
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Overview

Dimensionality Reduction

Robustness
• VGG > BoVW. Its feature vec-

tor is 15-times smaller;
• GoogLeNet > VGG, but has 12-

times more dims;
• (DR-2) > (DR-1), as it pre-

serves important info.

Removing 95% of dims.
• (DR-1) BossaNova 88%;
• (DR-1) VGG-M 89%;
• (DR-1) GoogLeNet 95%;
• (DR-2) VGG-M 98%.

w.r.t. the original scores.

Feature Compression

Observations
• (DR-2) and (Q-2) have comple-

mentary properties;
• Their combination yields com-

pact feature vectors;
• Useful for remote classif., image

retrieval and more;

Detailed combination

(DR-2) (Q-2) Compr. Score∗

80% 85% 96.9% 99.6%
90% 85% 98.4% 99.1%
90% 90% 99.1% 98.7%

∗ w.r.t. the original scores.

Stress Framework

Quantization: In h ∈ [1, 30] regular inter-
vals, using the minimum (min) and maximum
(max) scalar values in training set:

Q-1

st = max−min
h

H = {(min + st
2 ) + st× i | 0 ≤ i < h}

TQ-1(xij) = arg min
y

{
∣∣xij − y

∣∣ | y ∈ H}
Q-2

stt = max(xt)−min(xt)
h

Ht = {(min(xt) + stt
2 ) + stt × i | 0 ≤ i < h}

TQ-2(xij) = arg min
y

{
∣∣xij − y

∣∣ | y ∈ Hj}

Dimensionality Reduction: With n initial
dimensions, at each step 1 ≤ i ≤ 20 we pre-
serve only

pi = bn× (21− i)

20
c

Dropping strategy: (DR-1) randomly and
(DR-2) PCA-based.

Quantization

To keep original scores
• 7 values for (Q-1)

dlog2 7e = 3 bits;
• 4 values for (Q-2)

dlog2 4e = 2 bits.

Representing
• 9.4% of # bits for (Q-1);
• 6.3% of # bits for (Q-2).

Conclusion

Highlights
• Deep features are highly redundant;
• BoVW is not as robust as deep feat;
• Perf. depends on dataset complexity.

Source code available at
github.com/

MicaelCarvalho/DNNsUnderStress


