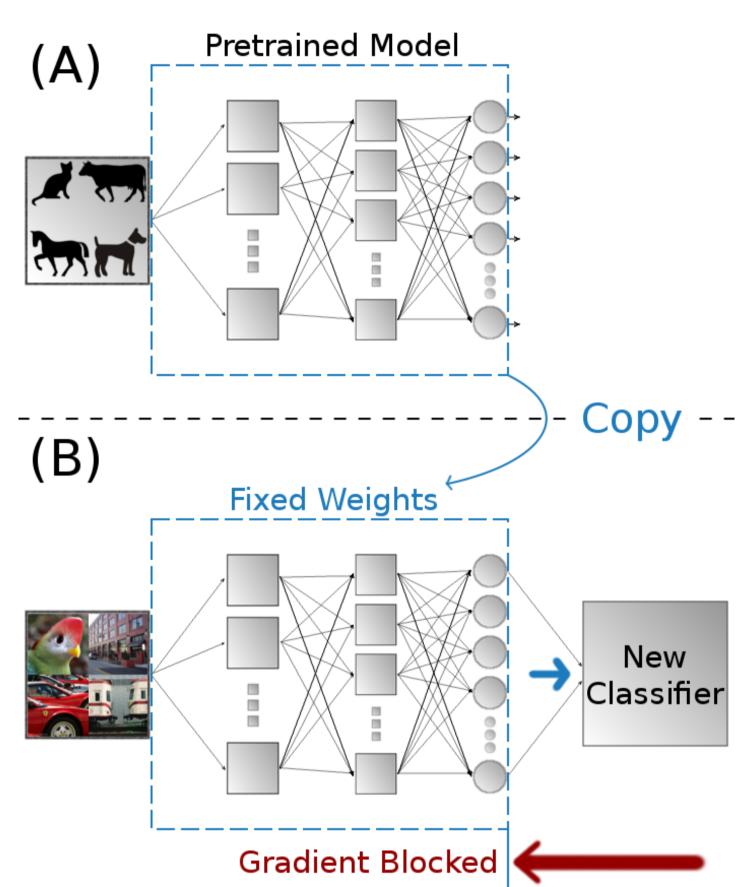


Deep CNN's outstanding performance on visual tasks. Transfer takes advantage of it



A pretrained classifier (A) can be seen as a feature extractor, used by (B) for classifying a different task.

Questions

- Adequate representation space?
- Possible to compress?

Experimental Protocol

Main apparatus

- VGG-M from [1];
- Pascal VOC 2007;
- Linear SVM.

Supplementary experiments

- BossaNova from [2];
- GoogLeNet from [3];
- (paper-only) MIT-67 Indoor;
- (paper-only) UPMC Food-101.

Original Scores

	$\mathbf{VGG-M}$	$\mathbf{GoogLeNet}$	BossaNova
VOC2007	76.95%	80.58%	51.02%
Dims.	4×10^3	5×10^4	6×10^4

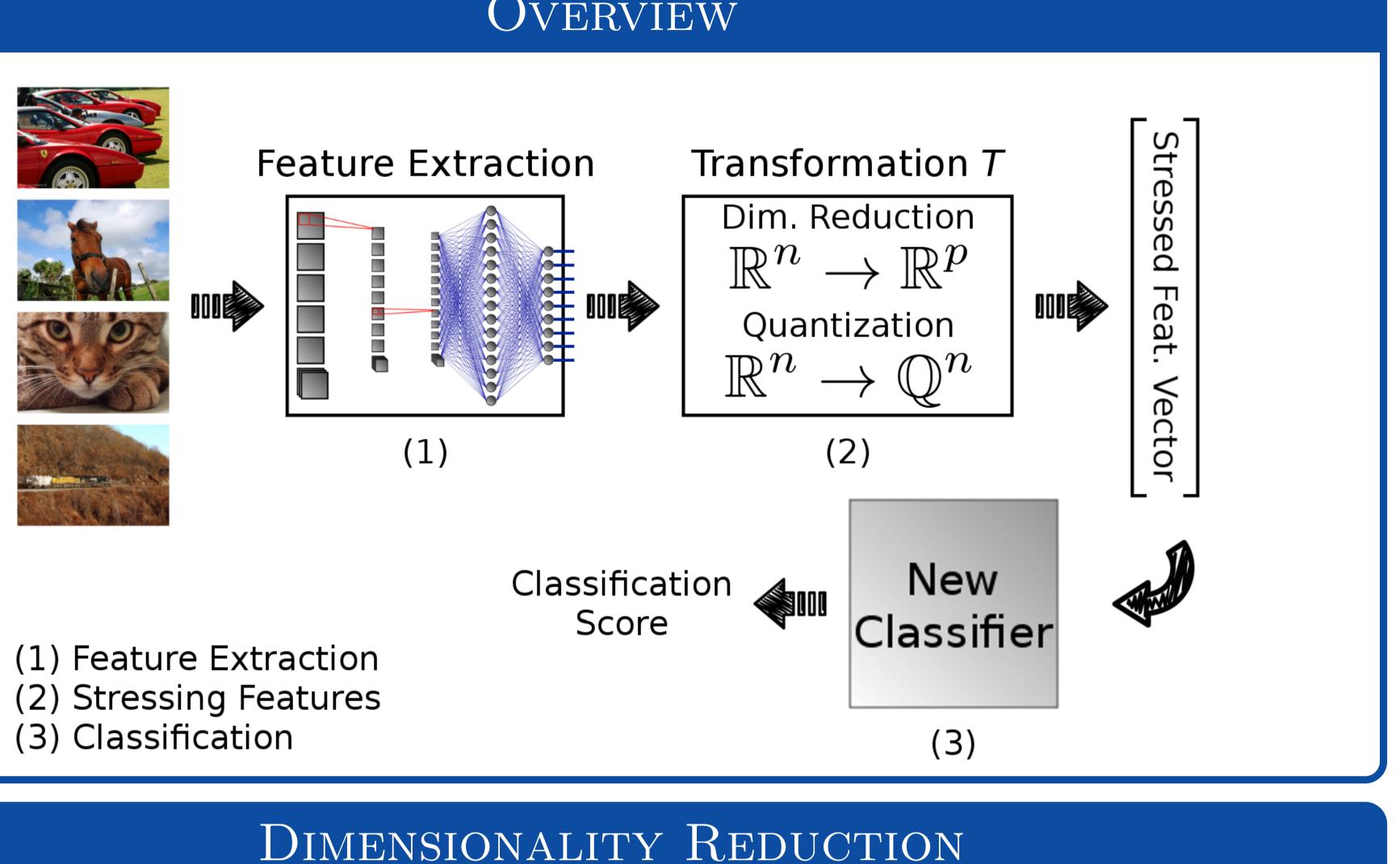
References

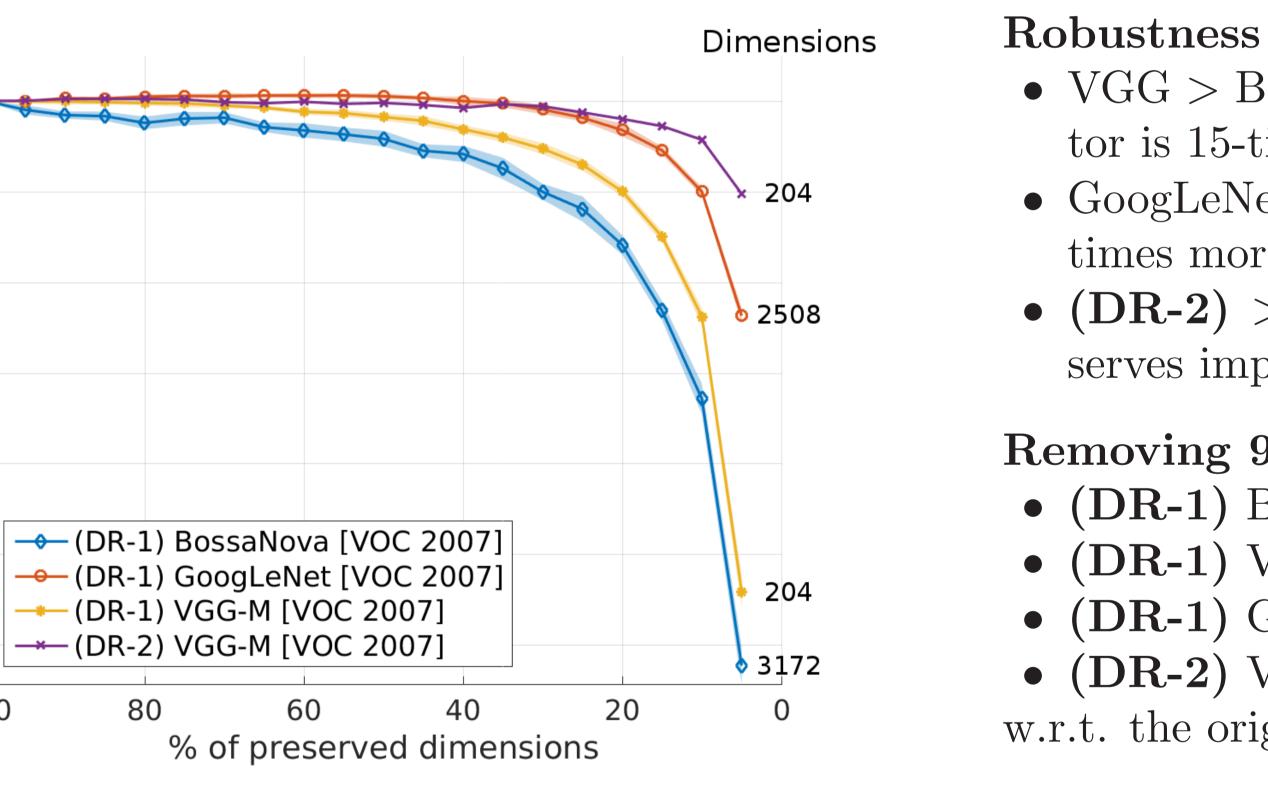
- [1] K. Chatfield et al. Return of the Devil in the Details: Delving Deep into (...), BMVC, 2014;
- [2] S. Avila et al. *Pooling in Image Representation:* The visual codeword point of view, CVIU, 2013; [3] C. Szegedy et al., Going deeper with convolutions, CVPR, 2015.
- 100 98 Ō 96 Ū igin Q۵ of 92 % 90 100 Observations (DR-2 80%90%90%

DEEP NEURAL NETWORKS UNDER STRESS

Micael Carvalho^(1,2), Matthieu Cord⁽¹⁾, Sandra Avila⁽²⁾, Nicolas Thome⁽¹⁾, Eduardo Valle⁽²⁾ (1) Université Pierre et Marie Curie, UPMC–Sorbonne Universités, LIP6, Paris, France (2) University of Campinas, UNICAMP, RECOD Lab, Campinas, Brazil arxiv.org/abs/1605.03498

OVERVIEW





FEATURE COMPRESSION

• (DR-2) and (Q-2) have complementary properties;

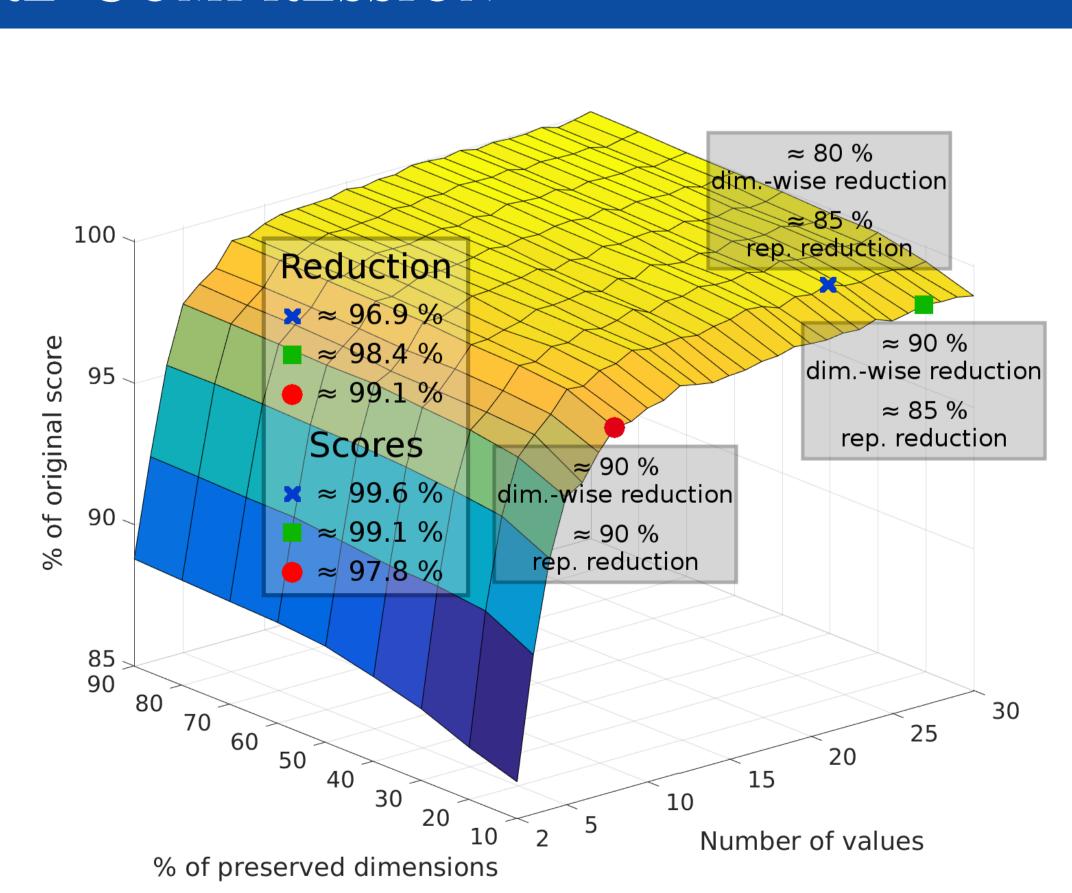
• Their combination yields compact feature vectors;

• Useful for remote classif., image retrieval and more;

Detailed combination

2)	(Q-2)	Compr.	\mathbf{Score}^*
	85%	96.9%	99.6%
	85%	98.4%	99.1%
	90%	99.1%	98.7%

* w.r.t. the original scores.



- VGG > BoVW. Its feature vector is 15-times smaller;
- GoogLeNet > VGG, but has 12times more dims;
- (DR-2) > (DR-1), as it preserves important info.
- Removing 95% of dims.
- (**DR-1**) BossaNova 88%;
- (DR-1) VGG-M 89%;
- (**DR-1**) GoogLeNet 95%;
- (**DR-2**) VGG-M 98%.
- w.r.t. the original scores.

STRESS FRAMEWORK

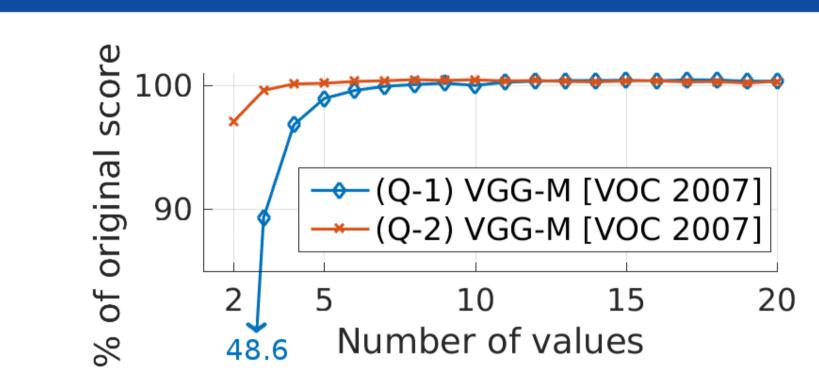
Quantization: In $h \in [1, 30]$ regular intervals, using the minimum (min) and maximum (max) scalar values in training set:

Dimensionality Reduction: With *n* initial dimensions, at each step $1 \le i \le 20$ we preserve only

$$p_i = \lfloor \frac{n \times (21 - i)}{20}$$

Dropping strategy: (DR-1) randomly and (DR-2) PCA-based.

QUANTIZATION



To keep original scores

- 7 values for (Q-1)
 - $\lceil \log_2 7 \rceil = 3$ bits;
- 4 values for (**Q-2**) $\lceil \log_2 4 \rceil = 2$ bits.

Representing

- 9.4% of # bits for (Q-1);
- 6.3% of # bits for (Q-2).

CONCLUSION

Highlights

- Deep features are highly redundant;
- BoVW is not as robust as deep feat;
- Perf. depends on dataset complexity.

Source code available at github.com/ MicaelCarvalho/DNNsUnderStress

