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Abstract—Intelligent agents need robust knowledge represen-
tation schemes to model and solve complex real-world problems.
A historical approach is the symbolic representation proposed in
classic AI. Although symbolic representations have their appeal,
the use of abstract symbols, representing general knowledge
about the world, brings limitations to the way agents develop
certain cognitive functions, as in the case of language. In the
standard symbolic approach, there is no ground for the symbols
used internally by the agents, creating a situation known as the
symbol grounding problem, as explained by Harnad [1]. To deal
with this problem, Gärdenfors [2] introduced a semantic theory
named conceptual spaces, which attribute meaning to linguistic
symbols. The geometry of such spaces forms a robust structure to
conceptualize information. In this paper, we use an unsupervised
classifier named Evolving Self-Organizing Maps (ESOM) to act
as the computational implementation of conceptual spaces. Our
results confirmed ESOM’s capability to create concepts, aiding
agents in reaching a linguistic consensus about different words
exchanged during an objects naming game. Besides providing a
way for symbols to get meaning on a biologically realistic way,
these results also open possibilities for other characteristics of
conceptual spaces to be applied on the study of artificial language,
as e.g. grammatical language.

Keywords—intelligent agents; knowledge representation; con-
ceptual spaces; evolving self-organizing maps; language games.

I. INTRODUCTION

Intelligent agents are software entities acting in an au-
tonomous way in complex environments. Usually, they are
designed to execute three cognitive functions: perceive the
environment, build an internal model to represent learned
knowledge and act in the environment modifying its condi-
tions [3]. Building an internal model to represent knowledge
plays an essential role among these three, because several
cognitive tasks depend on it to be executed, e.g. making plans
in order to solve problems, performing inferences in order to
discover implicit knowledge, selecting actions and others.

One of the issues related to knowledge representation in
intelligent agents is the development of realistic models of the
world. A traditional approach is to use a symbolic represen-
tation, according to classic AI approaches. This involves the
manipulation of chains of symbols following some formalism
and inference rules in order to derive new chains of symbols.
Usually, it comprises the use of knowledge from an expert to
solve specific problems [4]. Although the applications devel-
oped under this paradigm have achieved relative success [5],
the use of ungrounded symbols to represent knowledge brings
limitations to the way agents develop certain cognitive func-
tions, as in the case of language, in a wider scope [6].

According to Balkenius, Gärdenfors and Hall [7], the
manipulation of symbols is fundamental to the acquisition of
language. The way symbolic AI does it, however, is very far
from how humans acquire and use language. In symbolic AI,
all the information perceived by an agent during its sensory-
motor experience is translated directly to linguistic symbols,
which are supposed to encode the knowledge they represent.
Thus, there is no specific ground associated to the meaning
of symbols, besides the symbol itself, implying in a general
problem considered in the literature as the symbol grounding
problem, as explained by Harnad [1].

To deal with this problem, Gärdenfors [2] introduced a
semantic theory (using what he calls “conceptual spaces”) to
attribute meaning to linguistic symbols. According to him,
our mind organizes the information involving perception and
memory in standard structures he calls “concepts”, which can
be modeled in a geometrical way, organized in what he calls
“conceptual spaces” (to be addressed further in this article).

Many authors have used computational applications for
investigating how meaning can co-evolve with language. A
widely adopted approach for this purpose is the notion of
language games, which was introduced by the philosopher
Ludwig Wittgenstein. Its purpose is to emphasize that the
meaning of words, and of linguistic constructions in general,
lies in how they are used in concrete activities or “games”. In
language games, a population of agents must achieve linguistic
consensus on how to refer to objects of a context. All agents
start playing the games without a language, causing all games
to fail in the beginning. From these failures, they can learn
to communicate better if they manage to establish a shared
language.

Some researchers have already explored the use of con-
ceptual spaces for language games, aiming at representing
the meaning of a shared language (e.g. [8], [9]). Although
their results are promising, the adopted approaches demand
the agent’s internal representation to be trained a priori, not
allowing new concepts to emerge during new experiences.

Therefore, the main contribution of this paper is the adop-
tion of a real-time computational technique capable of building
conceptual spaces from scratch. We expect it to provide a way
for symbols to get meaning on a biologically realistic way,
while allowing for new concepts to emerge during the agent’s
interactions with the world. Furthermore, we expect it to allow
other characteristics of conceptual spaces to be applied on the
study of artificial languages, as e.g. in the case of grammatical
languages.



In our experiments, language games are used to evaluate the
performance of Evolving Self-Organizing Maps (ESOM) [10]
in building conceptual spaces. During the games, the agents
represent their knowledge about the environment in terms of
conceptual spaces and use it to ground the words exchanged
during their communication. Our results indicate that concep-
tual spaces are very efficient for concept representation and
learning, corroborating the results obtained by other studies
(e.g.[11], [12], [13]).

This paper is organized in the following way: Section II
briefly introduces conceptual spaces and discusses some of its
main aspects. Section III shows characteristics of ESOM which
are particularly relevant to their application as implementations
of conceptual spaces. Section IV describes our approach to the
problem, defining the language games and the different ap-
proaches used in the naming game. Section V provides details
about our experiments and results, showing how ESOM can be
used to implement conceptual spaces and its performance in
the naming game. Finally, section VI provides insights about
our findings and possible future applications.

II. CONCEPTUAL SPACES

According to Gärdenfors [14], concepts are mathematical
structures which represent the meaning of words. The most
common kind of concepts are object categories, but there might
be concepts associated to qualities, actions, events and possibly
to all categories and special combinations of words as well.
Concepts are defined with the help of conceptual spaces, and
conceptual spaces are constructed out of quality dimensions.
The primary role of these dimensions is to represent various
qualities of objects in different domains.

In cognitive psychology, a set of one or more different
types of quality dimensions can be separable or integral. A
set of dimensions is said to be integral when all the quality
dimensions in the set are equally necessary to characterize a
given quality. Color, for instance, is an integral set formed by
hue, saturation and brightness quality dimensions. We can not
assign hue to an object without assigning both brightness and
saturation. A set of dimensions which don’t obey that rule is
said to be separable.

A domain, then, corresponds to a set of integral dimensions
that are separable from all other dimensions. Many domains,
such as temperature and weight, consists of only one dimen-
sion. Other domains, such as color and location, may require
multiple dimensions. A conceptual space is a collection of one
or more domains, which can be used to assign properties to
an object.

The notion of property is used to denote information related
to a single domain. More specifically, a property is defined
as a convex region in some domain. To say that a region
R is convex means that for any two points x and y in R,
all points between x and y are also in R. Properties, when
put together and correlated in a specific way, can be used to
represent, for instance, the concept of an object. Objects are,
therefore, identified as points within conceptual spaces, their
properties are represented by regions in specific domains and
the category of this object, which is also a concept, is denoted
by a collection of regions (properties) and their relations in a
conceptual space.

Categories of objects are special concepts which can be
represented by prototypes. Prototypes are special objects of
a category, because they can be used to derive the full
region which comprises the category. In Figure 1, we present
a conceptual space formed by a single domain, which is
represented by the quality dimensions X and Y (axis), and
the black points serve as prototypes for each category. From
the full set of points, we can derive a Voronoi diagram, which
creates partitions of the conceptual space, where each region
comprises a property.

Fig. 1: Deriving properties from prototypes in a conceptual
space, formed by a single domain, using a Voronoi diagram.

According to Gärdenfors [2], the use of conceptual spaces
provide a different approach when compared to symbolic
AI. In symbolic AI, the assignment of semantics to symbols
requires an external interpretation. In the current approach, the
semantics is implicit in the definition of conceptual spaces.
Because of this, we can say that the use of conceptual spaces
might be a possible solution to the symbol grounding problem.
Furthermore, conceptual spaces provide a robust framework
for learning concepts for language, because to have a space
partitioned into a finite number of regions implies that a finite
number of words can be used to refer to such regions.

III. CONCEPTUAL SPACES AND EVOLVING
SELF-ORGANIZING MAPS

In machine learning, clustering tools are methods capable
of detecting similarities, regularities and correlations in the
input data, clustering it in groups (clusters) [15]. Conceptual
spaces, as shown by Gärdenfors [2], work in a similar way,
since created domains are used to categorize objects sharing
similar properties, and can, therefore, be likewise implemented.

There are several clustering algorithms available in the
literature that could be used for implementing conceptual
spaces (e.g. [16], [17]). Our choice, however, was based on
the evaluation of their compatibility to the conceptual space
definition and their applicability to the grounding of linguistic
symbols. Additionally, we have defined that it was desirable for
the algorithm to have biological plausibility, besides being able
to learn new concepts during the agent’s interactions, without
prior training.

We have selected a self-organizing artificial neural network
named Evolving Self-Organizing Map (ESOM), proposed by
Deng and Kasabov [10], as a candidate. ESOM is based on
the Self-Organizing Map (SOM)1, proposed by Teuvo Koho-
nen [18]. According to Silva, Spatti and Flauzino [15], SOM

1SOM is also known as Kohonen’s Self-Organizing Map or, simply,
Kohonen’s network.



was inspired in the human cortex and is commonly applied
to the resolution of problems involving pattern classification
and data clustering. Although SOM can be used in different
kinds of problems, it has a severe limitation which precludes
its use in the learning of conceptual spaces: the need of a
priori training.

The fact that ESOM is an evolutionary neural algorithm
makes it particularly interesting for modeling conceptual
spaces, mainly due to its ability to perform unsupervised
online learning2. The network structure, formed during the
learning phase, is self-adaptive and incremental. New clusters
and possibly outliers may appear and disappear, creating a
topology according to the data organization. These charac-
teristics give ESOM flexibility and efficiency, allowing it to
learn good representations for the input data. In this paper, the
configuration of nodes will be used to segment the conceptual
space in semantic regions (clusters), where each region can
represent a category of object.

Deng and Kasabov [10] also compared the performance of
ESOM with other neural networks, such as SOM and Growing
Neural Gas, in challenging scenarios. Their results indicate that
their approach is faster and more effective.

IV. PROPOSED APPROACH

In this section we introduce the details of the computational
simulation we developed, a language game called naming
game. ESOM was adopted for building conceptual spaces
during the games (ESOM Conceptual Space – ECS). We have
tested three different strategies for naming, further detailed in
Subsection IV-C.

A. Naming games

The concept of language game was introduced by the
philosopher Ludwing Wittgenstein as a tool to explore the
characteristics of linguistic interactions. There are many dif-
ferent implementations of language games3 and each one deals
with a specific aspect of language, its emergence and evolution.
For our experiments, we adopt the naming games, introduced
by Steels and Loetzsch [19].

According to Steels and Loetzsch [19], a naming game is
the simplest possible kind of language game imaginable. It is
a game of references in which the speaker tries to draw the
attention of the listener to an object in the context by naming a
characteristic feature of the object. Thus, a population of agents
must create and maintain a shared set of names to be assigned
to a set of objects. Such names are exchanged during a game
and can spread between the population only by interactions
between the agents.

Our games are similar to the naming game implemented
by Wellens [22], but with an extra stage for categorization on
the game script, implemented by an ECS. This is a necessary
change since, in Wellens’ game, names have a meaning only
when the referred object is physically present in the context.

Barsalou [6] explains that, on language, a meaning doesn’t
refer to physical entities, but to mental projections created

2Online learning uses a data stream as input.
3Some examples of language games include: the naming games [19], the

guessing games [20] and the description games [21].

by past experiences during cognitive activities. Conceptual
spaces will, thus, allow this projections to be created and,
consequently, the agent will recognize an object by the relation
established between its name and its meaning, instead of the
relation between the name and the object itself. We expect
this change not to affect the results shown by Wellens [22],
but to expand them instead, allowing other situations to be
explored, like text interpretation (without the presence of
physical objects) and object variability within the same class.

B. The grounding naming game

According to Steels and Loetzsch [19], a naming game
demands a population of agents and a world consisting of a set
of individual objects. For every game, a context is generated
containing a subset of the world. Two agents, speaker and
listener, are randomly chosen from the population and are
confronted with the same context. In our implementation,
agents extract object features to create conceptual spaces,
which are used for categorizing the objects in the context.

Given its conceptual space and a purpose, the speaker
conceptualizes a semantic structure, which will be used by the
linguistic system to produce a name. The same will happen to
the listener that, upon receiving a name, will use its conceptual
space to find a corresponding semantic concept to interpret
it. The following steps represent one iteration of our naming
game:

1) Two agents (1 speaker and 1 listener) are chosen
randomly;

2) A context is generated with a random set of world
objects;

3) Both agents classify each object based on their con-
ceptual spaces (categorization phase);

4) The speaker mentally picks one referent object and
categorizes it; If there is a name (a single three
syllable word) for that category object in its lexi-
cal dictionary4, the speaker utters it; otherwise, the
speaker creates a new name and utters it;

5) The listener hears the name and search for it in its
dictionary; If there is an entry for such name in its
lexical dictionary, the listener gets the features associ-
ated to that category and points them; otherwise, the
listener points to invalid features to indicate it does
not have a category associated to that name;

6) The speaker classifies the features, agreeing or dis-
agreeing with the listener; if they are in the same
class of the referent object, the speaker indicates
a communication success and rewards the chosen
name by increasing its weight; otherwise, the speaker
indicates a communication failure, punishes the name
and indicate the correct referent object to the listener;

7) The listener detects the speaker’s feedback; if the
communication succeeded, the listener also rewards
the name used during the communication; otherwise,
it classifies the referent object, retrieves the object’s
category and adds to its lexical dictionary the name
used by the speaker.

4The lexical dictionary is a data structure created by each agent for
maintaining pairs (category, set of names), associating each category to a
possible set of names referring to it. To each name in the set, there is also an
associated weight.



C. Strategies for the naming game

During the game, different names compete among them-
selves to describe an object/category. Agents will score each
of these names based on its success (both agents agree on the
same name) or failure (no agreement is reached) during the
communication, according to different strategies, as shown by
Wellens [22]. In this paper, we focus on three of them:

• Minimal Naming Game (MNG) the agent keeps
multiple names for each category and in the case
of communication success, both agents remove all
the other names for that category, keeping only the
winning name. In the case of failure, the listener agent
adopts the name proposed by the speaker agent.

• Basic Lateral Inhibition (BLI) the agents keep multi-
ple names for each category, scoring each name with
a real value in the interval (0, 1]. In the case of a
communication failure, the speaker decreases the score
of the used name by δdec and the listener adopts it
with the initial score of sinitial. In the case of a
communication success, both agents increase the score
of the used name by δinc and decrease the score of
other names by δinh. Any name can be removed from
the lexical dictionary, if its score reaches a value lower
than or equal to 0.

• Interpolated Lateral Inhibition (ILI) is similar to
the Basic Lateral Inhibition, incrementing (reinforc-
ing) or decrementing (inhibiting) the scores (s) with
a given δ that is interpolated between 0 or 1. For
reinforcement: s = s + δinc(1 − s) or for inhibition:
s = s− δinhs.

V. EXPERIMENTAL RESULTS

Our results are divided in two parts. In the first part,
we implemented the ESOM algorithm, as proposed by
Deng and Kasabov [10]. Before adding it to the naming game,
we have verified whether it may be used as a conceptual space
(named ECS). In the second part, we present results for the
ECS in the naming game.

A. ESOM implementation

Our ESOM was implemented as a Java application, follow-
ing the algorithm described by Deng and Kasabov [10]. The
ESOM starts with no nodes and, during each learning iteration,
it self-updates to categorize the input data, creating new nodes
and new connections when necessary (i.e. if the network is
empty or the distance - Euclidean distance - between input data
and the nearest node is greater than the established threshold
ε). Here, ε is very important, since it clearly controls the
growing rate of the network, and was adjusted based on the
tasks we were working on. When a new node is created,
its prototype represents exactly the input data, which can be
adjusted in later iterations. If the distance between the input
data and the nearest node is smaller than ε, however, the
connections of such node are updated, and no new node are
added. The connections between nodes have a fundamental
role of maintaining relationships between neighbor nodes.
Their strength (relationship) is determined by their distance,
which is updated by the learning rate 0 < γ < 1. Every T

steps, the connection between the two most distant nodes (i.e.
the nodes with the weakest connection) is pruned.

Figure 2 shows the evolution of an ESOM. The initial
neighborhood of each new node is defined to be the two
nodes closest to it. In our example, node 3 was created and
connected with nodes 2 and 1. After some time, the connection
between nodes 3 and 2 was pruned. The pruning occurs when
the distance between two nodes is too big (indicating a weak
connection). Each node has a representative area bounded by
ε.
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Fig. 2: The evolution of an ESOM. (a) The nodes 1,
2 and 3 are created; (b) Two new nodes, 4 and 5, are
added; (c) The weakest connection is prunned. Adapted from
Deng and Kasabov [10].

For more details on ESOM, we recommend the reader to
refer to the work of Deng and Kasabov [10].

B. ESOM as conceptual spaces

In order to validate our ESOM implementation, and verify
whether it can operate as a conceptual space, a synthetic
dataset with 12 classes, composed of 2 features each, and
1000 data points was created. After defining the initial classes,
we randomly sampled the points from such classes and, for
each sampled point, we have added random noise following
a normal distribution (µ = 0, σ = 2). The resulting points
are shown in Figure 3, and their ground-truth classes are
represented by different colors in Figure 4. It is easy to see that
near to their boundaries there is no clear distinction between
neighbor classes, since the dataset was designed to allow small
class overlapping and the ESOM should be able to generalize
from the noisy data.

Fig. 3: Graphical plot of our synthetic dataset, composed of
12 classes (with 2 features each) and 1000 data points. Each
point was randomly sampled from one of the 12 classes and a
random noise was applied to it, following a normal distribution
(µ = 0, σ = 2).

After defining ESOM’s initial parameters5, the training
phase began. At each iteration, a point was presented to
the ESOM for learning and labeling. This way, the dataset

5For reproducibility: threshold ε = 9.0 and learning rate γ = 0.4.



Fig. 4: Graphical plot of our synthetic dataset shown in
Figure 3, with the original class for each point represented
by its color.

representation is constructed in real-time, without any prior
training.

Fig. 5: Real-time labeled points by an unsupervised technique
(ESOM), with the Voronoi tessellation for each class at the
end of the 1st training phase. Each color represents a different
label and the large black dots represent prototype points
(nodes/neurons of the map), determined by the ESOM.

Fig. 6: Real-time labeled points by an unsupervised technique
(ESOM), with the Voronoi tessellation for each class at the end
of the 10th training phase. Each color represents a different
label and the large black dots represent prototype points
(nodes/neurons of the map), determined by the ESOM.

In Figures 5 and 6, we show the real-time labeled points
obtained through the training phases 1 and 10, respectively,
and the corresponding tessellation at the end of each phase.
The nodes act like prototype points, representing the dataset
configuration. This way, each node is segmenting the space
in a semantic domain (represented by a Voronoi tessellation),
shaped as convex regions, determining that each point within
one region shares the same property, i.e. the points are similar.
According to Gärdenfors [14], the tessellation provides a

geometric answer for how a similarity measure, with a set
of prototypes, can determine a set of categories.

One can argue that, through time, ESOM tends to stabilize
the regions. In Figure 5 each point is colored with the
label assigned to it during the first time it was presented
to the ESOM. Although the spatial division and the labels
were mostly correctly defined, there were still some outliers,
showing that the prototype points were moving during the
classification of other points. Figure 6, on the other hand,
shows the colored points after 10 training iterations, with less
outliers. The difference in the regions between the first and the
tenth iterations is also small, indicating that the ESOM could
successfully build a good representation for the problem after
seeing the data only once.

C. ECS’s performance in the naming game

For the experiments we describe here, we have considered
a population of 50 agents and a world with 5 types of abstract
objects, each of them described by a vector composed of 4
quality dimensions, with random values in the interval [0, 1].
Each agent is capable of creating and maintaining its own
lexical dictionary and conceptual space (ECS), as previously
described.

During each game, two agents were randomly selected
(speaker and listener) to interact and the context was composed
of all the 5 objects. They then executed an iteration of the nam-
ing game following the steps 3-7 described in Subsection IV-B.

We ran a total of 100 experiments, each of them with 12500
iterations of the naming game6. The experiment measured the
population alignment (alignment success), given by: (1) the
communicative success, i.e., the listener’s ability to correctly
identify the name uttered by the speaker, pointing to the correct
referent and (2) the agent’s preference with respect to the
name, i.e., if both the speaker and the listener would choose
the same name to point to the object. If both criteria are met,
the alignment success is 1, otherwise, 0.

The average population alignment for our experiments was
calculated for each naming strategy we have addressed (MNG,
BLI and ILI) and our results are shown in Figure 7a. For
comparison, in Figure 7b we also offer the results obtained by
Wellens [22].

Both our and Wellens’ [22] experiments indicate that the
BLI and the ILI strategies have fast convergence at the begin-
ning of the experiment, while the MNG strategy converges at a
slower rate. A possible explanation, provided by Wellens [22],
is that the MNG limits the agent’s memory capacity, removing
all the adversary names instead of a gradual inhibition. The
BLI strategy, however, have the best results, since it doesn’t
remove all of the adversarial names and promotes linear
reinforcements in the scores, instead of interpolated values7.

Our results (Figure 7a) are very similar to the results
presented by Wellens [22] (Figure 7b), indicating that the use
of ECS could match the performance of a simple dictionary-
based implementation. We emphasize that because our agents

6For an average of 500 games per agent, we have (2 ∗
(number of games÷ (size of population)).

7For a detailed explanation, please refer to Wellens [22], subsection 2.4.1.



(a) Alignment success reached by our ECS implementation

(b) Alignment success reached by Wellens (2012). Reproduced from
Wellens [22].

Fig. 7: Alignment success for the Lateral Inhibition and
Minimal Naming Games strategies. 7b shows the alignment
success reached by Wellens [22] and 7a shows the alignment
success reached by our method. Both lateral inhibition strate-
gies uses the parameters: δinc = δdec = 0.1, δinh = 0.5 and
sinitial = 0.5.

were in a dynamic environment with objects unknown a priori,
their semantic domains were gradually formed while they
participated in the games. The ECS, then, acted as an internal
environment model for each agent, grounding the linguistic
symbols used during the agents interactions. At the end of the
games, each agent had 5 prototype points left in their ECS,
representing the 5 objects from the environment.

VI. CONCLUSION

In this paper we have shown how an unsupervised online
classifier, named Evolving Self-Organizing Map (ESOM), can
formalize the computational implementation of conceptual
spaces. Our approach could successfully identify the different
clusters in our synthetic dataset and categorize them using pro-
totype points (see subsection V-B), indicating that the ESOM
can be used for building conceptual spaces on intelligent
agents.

We also emphasize that our proposal (ECS) extends the
model adopted by Wellens [22], allowing the meaning of the
names to be learned in real-time, while the agents learn to
identify the objects. This could be useful, for instance, in
problems involving noisy data or category naming, when many
different objects should be referred with the same name (e.g.
toys, buildings, fruits etc).

These results could lead the way to the usage of conceptual
spaces in more challenging tasks, as in the field of grammatical
language. To Gärdenfors [14], there are strong arguments in
favor of the use of conceptual spaces for such problems, as it
allows us to study syntactic aspects of the word classes through

their cognitive grounding. This may be a promising way to
develop compositional linguistic expressions.
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